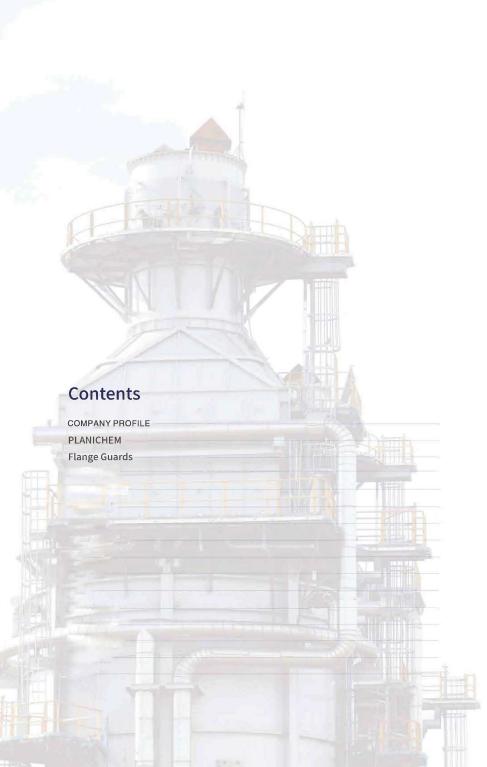


Xin Laisen Engineering Technology (Shanghai) CO., Ltd

Mobile phone:+86 180 1684 4291 Email:felix@xinlaisen.com Address: Kuangyan Industrial Zone, Cixi City, Ningbo


Priority

and the

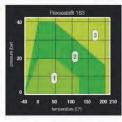
Efficiency

Xtra

Xin Laisen Engineering Technology (Shanghai) Co., Ltd— China sealing crystallization, specializing in production of spiral wound gaskets, kammprofile gaskets, RTJ, corrugated gaskets, graphite composite gaskets and various nonmetallic gaskets. The company has passed the ISO 9001 system certification. As a professional sealing production and export enterprises, Xin Laisen provide a full range of static sealing products. In order to meet the special needs of domestic customers, but also agent foreign famous brands. Xin Laisen has a fast computerized quotation system, adequate inventory and welltrained customer service team.

Xin Laisen provides reliable quality and stable performance gaskets for many famous international oil companies. Xin Laisen is a qualified global gasket supplier approved by EXXON MOBIL Corporation (ExxonMobil) after an on-site audit. It is the largest gasket supplier of international famous oil companies such as EXXON MOBIL, SHELL and Saudi Aramco. The most famous gasket companies in the United States LAMONS, GARLOCK, TEADIT, Europe JAMES WALK and Saudi Delmon Sealing Company, etc., have set Jihong as the largest OEM production base in China. Saudi Delmon Sealing Company is a major gasket supplier to Saudi Aramco. Stable and reliable product quality fully meet the global High standards for petrochemical companies. Xin Laisen has become a leading international company in the gasket industry.

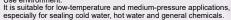
As a high-tech enterprise, Xin Laisen sealing has a strong product research capability, and the level of production research technology has always been in the forefront of the industry.

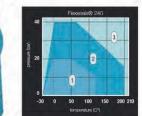

Xin Laisen produces the most widely used spiral wound gaskets in the petrochemical industry, product quality and production capacity has been widely praised by customers around the world. In the United States petrochemical base Houston, Xin Laisen have been recognized as the preferred gasket supplier, with a very high reputation. The current production capacity of metal wound gaskets has reached 40,000 pieces per day. Xin Laisen has developed into the world's largest gasket manufacturer and supplier. As quality first Enterprises, Xin Laisen also become the main gasket supplier of domestic petrochemical giant Wanhua Chemical Group Co., LTD., Zhejiang Petrochemical Co., LTD., Jiangsu Shenghong (Lianyungang) Co., LTD., Shandong Hualu Hengsheng Chemical Co., LTD. Xin Laisen has a fast computer quotation system, reasonable and sufficient inventory and well-trained customer service team.

Our mission is to:

The seal of China to the world, the seal of the world to China. Our goals are: Where needs seals, theres an Xin Laisen!

The Flexseals series products are made by bonding organic fibers and rubber, and due to their extremely flexible anti chemical and physical properties, they have great versatility. This series of products can provide different types of products formed by different internal fillers, so the sealing gasket can ensure excellent sealing performance under most chemicals and most temperatures and operating pressures, thanks to the addition of internal reinforcement fillers. Flexseals series panels can provide fillers based on synthetic fibers, mineral fibers, aramid fibers, and carbon fibers. All products in this series are made of the highest quality materials and have maximum versatility, ensuring maximum reliability and durability even in critical sealing applications.




Organic fiber bonded with

FMI[®]163

Components	NBR/SBR
Density DIN 28090-2 (g/cm3)	1.7 - 2.1
Maximum operating temperature - Continuous temperature (\circlearrowright)	140
Maximum operating temperature - Peak temperature (C)	210
Maximum operating pressure (Mpa)	7
Leakage rate is 3535-6 (mg*s-1* m-1)	0,1
Stress resistance *-16h/175 C Din 52913 (MPa)	20
Compression rate ASTM F 36-J (%)	5-15
Rebound rate ASTM F 36-J (%) min.	50
ASTM Oil-IRM 903 5h/150°C max (%) ASTM F 146	10
ASTM Fuel B 5h/23°C max (%) ASTM F 146	15
Sheet dimensions (mm)	1.500x1.000,1.500x1.500 1.500x3.000
Sheet thickness (mm)	0.5-5.0
Tolerance	
Sheet dimensions (mm)	+/- 50
Sheet thickness (mm)	+/-10
Color	Green
Use environment:	

FMI[®]240

Components	Organic fiber bonded with NE
Density DIN 28090-2 (g/cm3)	1.6-1.9
Maximum operating temperature - Continuous temperature (℃)	140
Maximum operating temperature - Peak temperature (C)	350
Maximum operating pressure (Mpa)	10
Leakage rate is 3535-6 (mg*s-1* m-1)	0,1
Stress resistance *-16h/175℃ Din 52913 (MPa)	20
Compression rate ASTM F 36-J (%)	5-15
Rebound rate ASTM F 36-J (%) min.	50
ASTM Oil-IRM 903 5h/150°C max (%) ASTM F 146	5
ASTM Fuel B 5h/23°C max (%) ASTM F 146	5
Sheet dimensions (mm)	1.500x1.000,1.500x1.500 1.500x3.000
Sheet thickness (mm)	0.5-5.0
Tolerance	
Sheet dimensions (mm)	+/- 50
Sheet thickness (mm)	+/-10
Color	Blue
Use environment: It is suitable for sealing cold water, and general chemicals.	hot water, steam, oil, fuel, gas

FMI[®]280

Components	Organic fiber bonded with NBR
Density DIN 28090-2 (g/cm3)	1.7 - 2.0
Maximum operating temperature - Continuous temperature ('C')	250
Maximum operating temperature - Peak temperature (°C)	400
Maximum operating pressure (Mpa)	10
Leakage rate is 3535-6 (mg*s-1* m-1)	0,06
Stress resistance *-16h/175 C Din 52913 (MPa)	30
Compression rate ASTM F 36-J (%)	5-15
Rebound rate ASTM F 36-J (%) min.	50
ASTM Oil-IRM 903 5h/150°C max (%) ASTM F 146	3
ASTM Fuel B 5h/23°C max (%) ASTM F 146	5
Sheet dimensions (mm)	1.500x1.000,1.500x1.500
Sheet thickness (mm)	1.500x3.000
Tolerance	0.5-5.0
Sheet dimensions (mm)	+/- 50
Sheet thickness (mm)	+/-10
Color	Black
Use environment: It is suitable for sealing steam (incl	uding superheated steam), water,

It is oil, solvent, fuel, gas, general chemicals, dilute acids and alkalis and many other industrial applications.

PLANI CHEM

FMI280[®]Metallic Organic fiber bonded with NBR

Components	and added with metal mesh
Density DIN 28090-2 (g/cm3)	1.9 - 2.2
Maximum operating temperature - Continuous temperature (C)	250
Aaximum operating temperature - Peak temperature (C)	400
Maximum operating pressure (Mpa)	12
Leakage rate is 3535-6 (mg*s-1* m-1)	0,08
Stress resistance *-16h/175 C Din 52913 (MPa)	32
Compression rate ASTM F 36-J (%)	5-15
Rebound rate ASTM F 36-J (%) min.	50
ASTM Oil-IRM 903 5h/150°C max (%) ASTM F 146	3
ASTM Fuel B 5h/23°C max (%) ASTM F 146	5
Sheet dimensions (mm)	1.500x1.000,1.500x1.500
Sheet thickness (mm)	1,500x3.000
Tolerance	1.0-5.0
Sheet dimensions (mm)	+/- 50
Sheet thickness (mm)	+/-10
Color	Black

Use environment:

It is suitable for a wide range of industrial applications, such as sealing steam (including superheated steam), water, oil, solvent, fuel, gas, general chemicals, dilute acids and alkalis.

We can provide customized sizes and thicknesses according to customer requirements. The maximum temperature and pressure values cannot be used simultaneously. The above parameters are the parameter values for products with a thickness of 2mm* The above parameter values are also applicable to products with a thickness of 1.5mm.

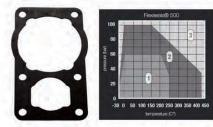
(1) Applicable scope (2) Recommend technical consultation

(3) Technical consultation is required

(1) Applicable scope (2) Recommend technical consultation

(3) Technical consultation is required

PLANI CHEM SICHEM SOLUTIONS



Fiexe eals® 33

FMI[®]330

Components	High quality mineral and aramid fiber bonded with NBR
Density DIN 28090-2 (g/cm3)	1.7 - 2.0
Maximum operating temperature - Continuous temperature (C) Maximum operating temperature	330
- Peak temperature (°C)	450
Maximum operating pressure (Mpa)	12
Leakage rate is 3535-6 (mg*s-1* m-1)	0,04
Stress resistance *-16h/175 C Din 52913 (MPa)	32
Compression rate ASTM F 36-J (%)	5-15
Rebound rate ASTM F 36-J (%) min.	50
ASTM Oil-IRM 903 5h/150°C max (%) ASTM F 146	3
ASTM Fuel B 5h/23°C max (%) ASTM F 146	5
Sheet dimensions (mm)	1.500x1.000,1.500x1.500 1.500x3.000
Sheet thickness (mm)	0.5-5.0
Tolerance	
Sheet dimensions (mm)	+/- 50
Sheet thickness (mm)	+/-10
Color	White

Use environment: It is suitable for general industrial applications with asbestos-free sheets, to replace CAF materials with the same thickness.

FMI[®]500

Components	Carbon fiber bonded with high quality nitrile rubber
Density DIN 28090-2 (g/cm3)	1.6 -1.9
Maximum operating temperature - Continuous temperature (C)	250
Aaximum operating temperature - Peak temperature (C)	400
Maximum operating pressure (Mpa)	10
Leakage rate is 3535-6 (mg*s-1* m-1)	0,05
Stress resistance *-16h/175 [°] C Din 52913 (MPa)	32
Compression rate ASTM F 36-J (%)	5-15
Rebound rate ASTM F 36-J (%) min.	50
ASTM Oil-IRM 903 5h/150°C max (%) ASTM F 146	3
ASTM Fuel B 5h/23°C max (%) ASTM F 146	5
Sheet dimensions (mm)	1.500x1.000,1.500x1.500
Sheet thickness (mm)	1.500x3.000
Tolerance	0.5-5.0
Sheet dimensions (mm)	+/- 50
Sheet thickness (mm)	+/-10
Color	Black
Use environment:	

	FLEXSEALS® 163	FLEXSEALS® 240	FLEXSEALS® 280	FLEXSEALS® 330	FLEXSEALS® 500
00% acetic acid					
Acetone					
Acetylene					
Numinium chloride	1000				
Ammonia					
Ammonium hydrogen phosphate					
Barium chloride			•		
Benzene					
Boric acid					
Calcium hydroxide	•				
Carbon dioxide					
Supric sulfate					
Crude oil					
Syclohexanol					
Cyclohexanone					
)ibutyi phthalate				2	
Ethyl ether					
Thene					
Ethylene glycol					
10% formic acid					
Slycerin					
lydraulic oil (mineral)					
Dried hydrogen chloride				1.	
10% hydrochloric acid					
Dry chlorine gas					
Chloroform sooctane					
Kerosene					
Verosene Dichloromethane					
latural gas	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -				
10% nitric acid					
litrogen					
Sasoline		1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 - 1996 -			
Petroleum	-	•			
Phenol	1999 - Carlo Ca			18.1	
Purified water					
otassium cyanide		•			
otassium iodide					
aturated steam					
ilicone oil		(• C • C			
Sodium carbonate	2 A 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		14	
Sodium bicarbonate		•			
Sodium bisulfite					
Sodium hydroxide				•	
odium chloride					
iodium sulfate					
Sugar					
15% sulfuric acid					
artaric acid					
etrachloromethane					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
oluene					
ransformer oil					
urpentine					
(ylene					

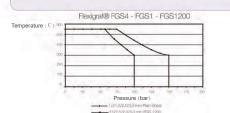
Applicable

Not applicable

Depending on operating conditions

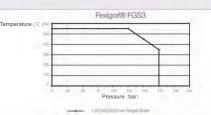
Use environment: It is suitable for various industrial applications, including sealing oil, fuel, steam, water and dilute acids, especially for sealing highly corrosive liquids.

Flexigraf FGS is a multi-layer sheet product based on high-purity graphite, reinforced with stainless steel, nickel, aluminum, and many other materials. This product series is particularly suitable for sealing high-temperature saturated steam and corrosive non oxidizing chemical reagents with a pressure of 200 bar up to 700 ° C Multiflex is a multi-layer board that can withstand pressures of up to 300 bar. Unigraph is a product series based on high-purity graphite, which can provide different densities and stress resistance. High temperature resistance is achieved by coating polymers on both sides of the graphite sheet. This series of products is very easy to cut and process. It also has good sealing effect at high temperatures, suitable for use on saturated steam and corrosive non oxidizing chemical reagents not exceeding 650 ° C and 120 bar. Flexingar FGS is a multi-layer sheet product based on high-purity graphite, reinforced with stainless steel, nickel, aluminum, and many other materials. This product series is particularly suitable for sealing high-temperature saturated steam and corrosive non oxidizing chemical reagents with a pressure of 200 bar up to 700 ° C Multiflex is a multi-layer board that can withstand pressures of up to 300 bar. Unigraph is a product series based on high-purity graphite, which can provide different densities and stress resistance. High temperature resistance is achieved by coaling polymers on both sides of the graphite sheet. This series of products is very easy to cut and process. It also has good sealing effect at high temperatures, suitable for use on saturated steam and corrosive non oxidizing chemical reagents not exceeding 650 ° C and 120 bar.



FMI[®]FGS1

Components	Graphite laminate reinforced with pure nickel foil core sheets
Density DIN 28090-2 (g/cm3)	1-1,2
Recommended min/max operating temperature - Peak temperature (C)	-200/+550
Maximum operating pressure (bar)	150
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.1
Stress resistance DIN 3535-6 (%)	<5
Compression rate DIN 3535-6 (%)	30 - 45
Rebound rate DIN 3535-6 (%)	35-6 (%) 3 - 7
Sheet dimensions (mm)	1.000x1.000,1.500x1.500
Sheet thickness (mm)	0.5-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/-10
Color	Black


Use environment: It is suitable for general gasket applications and can be used for sealing steam and most chemical categories excluding strong oxidants, especially for cutting.

FMI[®]FGS3

Components	Graphite laminate reinforced with stainless steel core sheets
Density DIN 28090-2 (g/cm3)	1,2-1,5
Recommended min/max operating temperature - Peak temperature (C)	-200/+550
Maximum operating pressure (bar)	200
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.1
Stress resistance DIN 3535-6 (%)	<5
Compression rate DIN 3535-6 (%)	30 - 45
Rebound rate DIN 3535-6 (%)	3 - 7
Sheet dimensions (mm)	1.000x1.000,1.500x1.500
Sheet thickness (mm)	0.5-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/-10
Color	Black

Use environment: It is recommended for sealing applications under high temperature and high pressure. A strong sheet is formed by adding steel reinforcement layer. FGS 3 can be used for sealing a wide range of substances, excluding strong oxidants at extreme temperatures and pressures. FGS3 is suitable for power plant and petrochemical fields.

FMI[®]FGS4

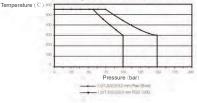
®

Components	Graphite laminate reinforced with flat stainless steel core sheets
Density DIN 28090-2 (g/cm3)	1,15 - 1,45
Recommended min/max operating temperature - Peak temperature (°C)	-200/+550
Maximum operating pressure (bar)	150
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.1
Stress resistance DIN 3535-6 (%)	<5
Compression rate DIN 3535-6 (%)	30 - 45
Rebound rate DIN 3535-6 (%)	3-7
Sheet dimensions (mm)	1.000×1.000, 1.500×1.500
Sheet thickness (mm)	0.5-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Black

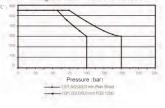
Use environment:

Use environment: It is recommended for sealing applications under high temperature and high pressure. A solid sheet with good processing characteristics is formed by adding core reinforcements. FGS 4 can be used for sealing various media excluding strong oxidants at extreme temperatures and pressures. With the soft properties of the graphite surface coating, FGS 4 is suitable for sealing between frayed or dented flanges. FG4 is suitable for power plant and netrochemical fields

FMI FGS 1200


Components	Graphite laminate reinforced with pure aluminum alloy core sheets	
Density DIN 28090-2 (g/cm3)	1-1,2	
Recommended min/max operating temperature - Peak temperature ($^{ m C}$)	-200/+550	
Maximum operating pressure (bar)	100	
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.1	
Stress resistance DIN 3535-6 (%)	<5	
Compression rate DIN 3535-6 (%)	30 - 50	
Rebound rate DIN 3535-6 (%)	3 - 7	
Sheet dimensions (mm)	1.000×1.000, 1.500×1.500	
Sheet thickness (mm)	0.5-3	
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10	
Color	Black	

Use environment:

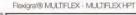

Femperature

Use environment: It is recommended for sealing applications under high temperature and high pressure. It can be used for sealing various media, excluding strong oxidants and acetic acid. With the soft properties of the graphite surface coating, FGS 1200 is suitable for sealing between frayed or dented flanges.

Flexigraf® FGS4 - FGS1 - FGS1200

Flexioraf® FGS4 - FGS1 - FGS1200

PLANI CHEM SICHEM SOLUTIONS

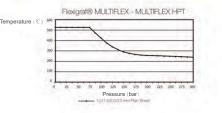

FMI[®]Multiflex HPT


Components	Graphite laminate reinforced with stainless steel multilayer core sheets
Density DIN 28090-2 (g/cm3)	1,4-1,6
Recommended min/max operating temperature - Peak temperature (C)	-200/+550
Maximum operating pressure (bar)	300
Leakage rate DIN 3535-6 (mg*s-rm-1)	≤0.1
Stress resistance DIN 3535-6 (%)	≤5
Compression rate DIN 3535-6 (%)	30 - 45
Rebound rate DIN 3535-6 (%)	3-7
Sheet dimensions (mm)	1.000×1.000 1.500×1.000, 1.500×1.500
Sheet thickness (mm)	1-6
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Black

Use environment:

8

Use environment: Multiflex is a multilayer sheet made of graphite with a thickness of 0.5mm and a density of 1.1 added with SS316L flat sandwich with a thickness of 0.05mm. Depending on the desired sheet thickness, of different amounts of SS316L and graphite foil layers are used. For example, for a final thickness of 3mm, 5 S316L layers and 6 graphite layers will be used.


FMI[®]Multiflesx

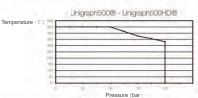
Components

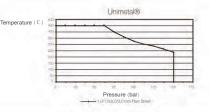
Graphite laminate reinforced with flat stainless steel multilayer core sheets

Density DIN 28090-2 (g/cm3)	1,3-1,6
Recommended min/max operating temperature - Peak temperature (C)	-200/+550
Maximum operating pressure (bar)	300
Leakage rate DIN 3535-6 (mg*s-rm-1)	≤0.1
Stress resistance DIN 3535-6 (%)	≤5
Compression rate DIN 3535-6 (%)	30 - 45
Rebound rate DIN 3535-6 (%)	3-7
Sheet dimensions (mm)	1.000×1.000 1.500×1.000, 1.500×1.500
Sheet thickness (mm)	1-6
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Black
Use environment.	

Use environment: The joint is made of a special hot processed adhesive. Multiflex is a sealing material with excellent mechanical properties, and is suitable for applications with high bott torque. In order to obtain the lowest leakage rate, some gaskets with inner and outer hole rings can be produced.

Unigraph It is a unique product series in the field of sheet metal. It is made of graphite plates coated with polymer on both sides, achieving a discontinuous process. The composition of this material makes it suitable for high temperature (up to 450 ° C) applications and low temperature (-196 ° C) applications. Due to its chemical inertness, which comes with being made of graphite, it is also widely used. Unigraph At temperatures as high as 450 ° C, stability and creep relaxation are less than 10/12%. The following chart fully describes Unigraph Usage during thermal cycling and continuous exposure to high temperatures, as well as Unigraph Comparison of creep values between compressed non asbestos boards. This patented process enables Unigraph Very easy to cut, while also possessing the characteristics of flexibility, sturdiness, and durability.


FMI[®]Unigraph 500


Components	Graphite sheet coated with polymer layers on both sides
Density DIN 28090-2 (g/cm3)	0,9 - 1,1
Recommended min/max operating temperature - Peak temperature ($^{\circ}$)	-200/+450
Maximum operating pressure (bar)	100
Leakage rate DIN 3535-6 (mg*s-rm-1)	≤0.1
Stress resistance DIN 3535-6 (%)	≤8
Compression rate DIN 3535-6 (%)	40 - 50
Rebound rate DIN 3535-6 (%)	3-7
Sheet dimensions (mm)	1.500×1.000 1.500×1.500
Sheet thickness (mm)	0.5-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Black

FMI[®]Unimetal

Components	Graphite sheet coated with polymer layers on both sides and reinforced with wire mesh
Density DIN 28090-2 (g/cm3)	0,9 - 1,1
Recommended min/max operating temperature - Peak temperature (°C)	-200/+450
Maximum operating pressure (bar)	150
Leakage rate DIN 3535-6 (mg*s-rm-1)	≤0.1
Stress resistance DIN 3535-6 (%)	≤8
Compression rate DIN 3535-6 (%)	40 - 50
Rebound rate DIN 3535-6 (%)	3-7
Sheet dimensions (mm)	1.500×1.000 1.500×1.500
Sheet thickness (mm)	0.5-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Black

9

We can provide customized sheets of other sizes and thicknesses according to customer requirements. The maximum temperature and pressure values cannot be used simultaneously. The above parameters are the parameter values for products with a thickness of 1.5mm.

Flexigraf[®] And Unigraph[®] Chemical Compatibility Guidelines

	UNIGRAPH 500 UNIGRAPH 500 HD	FGS3 - FGS4 - MULTIFLEX MULTIFLEX HPT UNIMETAL	FGS 1200	FGS1		UNIGRAPH 500 UNIGRAPH 500 HD	FGS3 - FGS4 - MULTIFLEX MULTIFLEX HPT UNIMETAL	FGS 1200	FGS1		UNIGRAPH 500 HD	FGS3 - FGS4 - MULTIFLEX MULTIFLEX HPT UNIMETAL	FGS 1200	FGS1
cetaldehyde cetamide	:		1	:	Calcium hydroxide Calcium hypochlorite	:	:	2	:	Ethyl acrylate Ethyl alcohol	:	:	12	
cetic acid rabic anhvdride					Calcium nitrate Sucrose wine		•			Ethylbenzene Ethyl carbamate	18			
cetone					Caprolactam					Ethyl cellulose			1	
cetone alcohol					Captan					Chloroethane				
cetophenone cetaminofluorene					Carbarb Carboxylic acid, phenol		1		1 2 1	Ethyl ether Ethyl caproate	1.1			1.2
petviene		•			Dry carbon dioxide	1.0				Ethene			C.M.	1.4
crolein crylamide					Wet carbon dioxide			*		Vinyl bromide Ethylene dibioamide			1.81	
styliamide	-		1.1		Carbon disulfide Carbon monoxide		1 1			Dichloroethane				1.2
crylic acid crylic anhydride					Carbon tetrachloride			1.		Ethylene glycol				
rytonitrile lipic acid		1.1			Carbon addition	1			1 2 1	Ethylimide Ethylene mide			1	1
lipic dinitrile	1.1		-	1	Carboxysulfide Castor oil	1.1				Ethylene oxide Vinvi thiourea			1	1 2
ri					Catechol			+		Ethyridine chloride				
yl acetate opylene chloride			1	1	Caustic soda Cetape		1		1 2 1	Ferric chloride Ferric phosphate		1		
yl methacrylate					Chinese wood oil					Ferric sulfate				
uminium chloride uminium fluoride	1		1		Chloramine Chlorazolac (Aqua regia)					Fluorine gas Fluorine, liquid			2	
uminum hydroxide (solid)					Chlordane			1		Fluorine, liquid Fluorine dioxide	1.2			1.2
olten aluminium					Dry chlorinated solvent					Formaldehyde				
uminium nitrate uminium sulfate		:	2.1	1	Wet chlorinated solvent Dry chlorine			-	: 1	Formic acid			1.1	1 :
loir					Wet chlorine		*			Fuel, acid			1.1	
nmonia, below 70 °C					Chlorine dioxide					Refined gasoline Gelatin		1.5		-
nmonia, above 70°C					Chlorine trifluoride Chlornacetic acid					Glucose			-	1.1
mmonia, liquid, anhydrous					Chlorophenone					Glycerin				
nmonium chloride	1.2	:			Chlorobenzene	1		5		Ethylene glycol Grain wine				1.2
nmonium nitrate			1.		Chloroethane					Grease, oil base				1.2
nmonium monophosphate					Vinyl chloride					Green sult Hentachlor				
ammonium phosphate amonium phosphate			1.1		Chloroform Chloromethyl methyl ether (CMME)			-	: 1	Heptachlor Heptane			2	1 2
nmonium sulfate					Chloric acid		•			Hexachlorobenzene		+		
nyl acetate monium sulfate					Chloroprene Chlorosulfonic acid					Hexachloroprene Hexachlorocyclopentadiene				1.1
iline, aniline oil	1.0				Chlorosultonic acid Chromic acid		2			Hexachiorocyclopentagiene		1.1	1.1	1.2
iline hydrochloride					Chromic anhydride					Cetane				
iline dye isylamine	1.2			1	Chromium sesquiaxide Citric acid	1.1	:	-		Hexamethylene hexacyanate Hexamethylphosphamide			1	1.1
timony trichloride					Coke oven gas					n-bexane				
ua regia lychlorinated biphenyls or alachlor					Cupric chloride Cupric sulfate				*	Hexanone Mineral hydraulic oil				
omatic hydrocarbon					Corp oil					Phosphate ester				÷.
senate acid					Cottonseed oil 10					Hydrazine				
senous acid phalt				:	Cressol cressol acid				:	Hydrobromic acid Hydrochloric acid	-			1.2
iation gasoline					Crotonic acid					Hydrochloric acid, dry				
rium chloride			1		Crude oil			1.		Hydrochloric acid, 20% Hydrocvanic acid	1.1	1		
rium sulfide			1.2		Isopropylbenzene Cyclohexane					Anhydrous hydrofluoric acid			1.	
ikon					Cyclohexanol					Hydrofluoric acid, below 65%, abow 70 T				1.2
er nzaldehyde					Cyclohexanone Diazomethane					Hydrofluoric add, 65% to anhydrous, above 70 °C Hydrofluoric add, maximum anhydrous, 70°C and below			1	
07000	•	3.4			Dibenzofuran		•	1.4	•	Hydrofluorosilicate acid				
nethane sulfonic acid nzidine	1		100	1	Dibenzyl ether Bromopropane	1			: 1	Hydrofluorosilicate acid Hydrogen	1			1.2
nzoic acid		•			Dibromoethane		•			Hydrogen bromide				
nzonitrile nzoquinone	2				Dibutyl phthalate Dibutyl sebacate	1.1	1 4 1	1.2	1 2 1	Chlorine fluoride Hydrogen dioxide 10%		1		1.1
nzene trichloride					Dichlorobenzene					Hydrogen peraxide, 10-90% Dry ar wet hydrogen sulfide	1.2		1.0	
nzoyl chloride					Dichlorobendiene					Dry or wet hydrogen sulfide				
nzyl alcohol nzyl chloride		1		1	Dichloroethane Dichloroethylene		2	:	1	Hydroquinone Iodine pentafluoride		:		1.1
diesel (B100)		•		+	Dichloroethyl ether					Chloromethane				
fenny (2-chloroethyl) ether	-		1	1	Dichloromethane	:	:	1	: 1	Isobutane		1	2	1.1
(chloromethyl) ether					Dichloropropane Dichloropropylene					Isophorone				
(2-ethylhexyl) phthalate					Dichlorphos					Isopropyl alcohol Aviation fuel				. *
ck vitriol ist fumace gas	2		- C.		Diesel oil Diethanolamine	1.1		2		Aviation fuel Kerosene				
sach (sodium hypochlorite)					Diethylaniline					Lacquer solvent				
iler feed water rax		1.2			Diethyl carbonate vinegar Diethyl sulfate				: 1	Lacquerware Lactic acid below 70 °C		:		1
nic acid					Dimethoxybenzaldehyde					Lactic acid above 70 C				
It water (sodium oxide)		1	1	1	Dimethylaminoazobenzene	:	:	1	*	Lime saltpeter	1	1	1	
omine omine trifluoride					Dimethylaniline Dimethylbenzidine					Lindane Flaxseed oil				1 :
omoform					Dimethylcarbarnyl chloride		*			Liquefied petroleum gas				
omomethane	:	1.1	-	:	Dimethyl ether	1	:	-	: 1	Lithium bromide Lithium	:	1	1	1
lane					Dimethylformamide Dimethyl phthalate					Refined oil				
tanone		•			Dimethyl sulfate					Lubricate mineral or petroleum type				
tyl acetate tanol	:		-	1	Dinitrophenol Dinitrotoluene	:	1 : 1	1	1 1	Acid Alkali	:	1	1.2	1 2
Mamine					Dioxane					Magnesium chloride				
t-butyl amine			1		Epichlorobydrin		*			Magnesium hydroxide			1	1
tyl methacrylate tyric acid	1				E85 (85% ethanol, 15% gas) Butane oxide					Magnesium sulfate Maleic acid				
					Ethane					Maleic anhydride				
lcium bisulfite lcium chloride					Ethers					Mercuric chloride				

apply Not applicable

Depending on operating conditions

No reference

	UNIGRAPH 500 UNIGRAPH 500 HD	FGS3 - FGS4 - MULTIFLEX MULTIFLEX HPT UNIMETAL	FGS 1200	FGS1		UNIGRAPH 500 UNIGRAPH 500 HD	FGS3 - FGS4 - MULTIFLEX MULTIFLEX HPT UNIMETAL	FGS 1200	FGS1		UNIGRAPH 500 UNIGRAPH 500 HD	FGS3 - FGS4 - MULTIFLEX MULTIFLEX HPT UNIMETAL	FGS 1200	EDE4
ethane ethanol	:	1	4	:	Potassium acetate Potassium dichlorate	:	:	:	:	Stearic acid Stoddard solvent	:	:	:	
ethoxychlor ethacrylic acid	:	1	1	:	Potassium chlorate, red Potassium cyanide	:	1	:	5	Styrene Styrene oxide	:	:		
arbinol	+		×		Potassium dichlorate		•			Sugar				
ethylaziridine romomethane					Potassium Potassium hydroxide		3			Sulfur oxide Sulfur dioxide	*			
hloromethane					Potassium iodide		1.22	-		Quebrith				
ethyl chloroform 4-methylene bis (2-chloroaniline)					Potassium nitrate Potassium permanganate	•	•			Dry sulfur trioxide				1 3
4-metriytene bis (2-chioroaniline) chloromethane		2	2		Potassium permanganate Potassium sulfite					Wet sulfur trioxide Sulfuric acid, 10%, below 70 °C	:		1.0	
ethylene diphenylamine					Gas production					Sulfuric acid, 10%, above 70 °C				
ethylene diphenyl diisocyanate ethyl ethyl ketone (MEK)		- 22			Propane Propane sulfonolactone				1.5	Sulfuric acid, 10-75%, below 260 C Sulfuric acid, 75-89%, below 270 C	:		1.1	
shylhydrazine					B-propanolactone			1.		Sulfuric acid, 75-89%, below 270 C Sulfuric acid, 75-89%, 70 °C-260°C	1			
iomethane	+				Propanal					Furning sulfuric acid		•		
ethyl isobutyl ketone (MIBK) ethyl isocyanate		1			Propyl alcohol Propyl nitrate	1	5	1.5	1.1	Sulfurous acid Tannic acid	:		100	
ethyl methacrylate		1.1			Propylene					Tartaric acid		1.1		
thylpyrrolidone thyl butyl ether (MTBE)			1.1		Propylene dichloride Propanediol	:	1	1.1	:	TCDB versus dioxins Tert-butyl amine	:	1	1	
nyi butyi etner (M IBE) A's mik ieral oil					Propylene oxide					Tetrabromoethane				
eral oil					Preimine	•	•			Tetrachloroethane	•	•		
Iten alkali metal nomethylamine	:		1	1	Alginic acid, hydrocyanic acid Pyridine	:	1.1	-	1	Tetrachloroethylene Tetrahydrofuran, THF	:		1	
ocyanic acid					Gourno					Sulfoxide chloride				
ohtha		:			Quinone Type 10 refrigerant					Titanium sulfate Titanium tetrachloride			2.1	
hthol			2		Type 11 refrigerant					Toluepe		1.0		
ural gas kel chloride					Type 12 refrigerant Type 13 refrigerant					Toluidine amine				
kel sulfate	:				Type 13B1 refrigerant		1.2	2.1		Toluene diisocyanate Toluene sulfonic acid		1.1	1.1	
ic acid less than 30%					Type 21 refrigerant					Toluidine amine				
ic acid, greater than 30% ic acid, coarse			20		Type 22 refrigerant Type 23 refrigerant	•			:	Toxic film Transformer mineral oil	:		2.1	
ic acid, red smoke					Type 31 refrigerant			÷ .		Transmission oil A	+			
obenzene objehenyl					Type 32 refrigerant Type 112 refrigerant					Trichloroacetic acid Trichlorobenzene			1.5	
obutanol	1				Type 112 refrigerant	1	1.1	- C - C - C	6.	Trichloroethane			1.00	
cium nitrite	*				Type 114 refrigerant			. 4		Hulk Taylomer Trichlorophenol		•		
rogen tetraoxide	-				Type 114B2 refrigerant Type 115 refrigerant	•	2	2		Tricresyl phosphate	-	:	2.1	
ite hydrochloride					Type 123 refrigerant			1.4		Triethanolamine		•		
romethane itro-2-methylpropanol	:		2	:	Type 124 refrigerant Type 125 refrigerant	:		1	:	Aluminium triethyl Triethylamine	:			
rite (Agua Regia)					Type 134a refrigerant					Trifluralin		•		
ophenol	1	1.1	2	1	Type 141b refrigerant Type 142b refrigerant	:	:	2	1.1	Trimethylpentane Turpentine	:	1	1.1	1
osodimethylamine					Type 143a refrigerant					Urea, below 70°F				
roso-methylurea roso-morpholine		1.1	1.1		Type 152a refrigerant Type 218 refrigerant					Urea, above 70°F Paint		1		1
kel nitrate (calcium nitrate)				1.1	Type 290 refrigerant (Propane)					Vegetable oil				
wegian saltpeter (calcium nitrate) ladecyl alcohol				1.1	Type 500 refrigerant Type 502 refrigerant	1.0				Acerbic Vinvl acetate				
adecyl alconol lane	-	1.1			Type 503 refrigerant					Vinyl acetate Vinyl bromide			1.1	
		+		•	Type 507 refrigerant	•				Vinvl chloride				
s, animals and vegetables sic acid	:				Type 717 refrigerant (Ammonia) Type 744 refrigerant (Carbon dioxide)	:	1.2		1.1	Vinylidene chloride Vinyl methacrylate	1	1.1	1.1	
ness				•						Water, acid ore, containing oxidized salt				
hlorobenzene alic acid					Type C318 refrigerant Type HP62 refrigerant		1 1	1.1		Water, acid ore, no oxidized salt Distillated water	1.1			
(gen, gas (BAM approved)					Type HP80 refrigerant					Return condensate				
me mitic acid			1.1	*	Type HP81 refrigerant Salt water	:	2		:	Seawater Tap water	:			
affin					Saltoeter, potassium nitrate					Whiskey			181	
athion	:			1	Sewage treatment Silicone oil			1		Spirit Xylene	1	: 1		
tachloronitrobenzene			1.4		Silver nitrate					Zinc chloride				
tachlorophenol					Baking soda, sodium carbonate		•			Zinc sulfate	+			
tane bloric acid					Baking soda Sodium bisulfate (drv)	:					_		_	-
chloroethylene			*		Sodium bisulfite		1.1							
de oil ned petroleum	:	1	1	:	Sodium chlorate Sodium chloride	:		-						
nol				•	Sodium cvanide			4						
nylenediamine sgene	:	1	1.1	:	Sodium Sodium bisulfite			-	:					
sphate ester	+				Sodium hydroxide			*						
sphine de phosphoric acid		1		1	Sodium hypochlorite Sodium metaborate peroxyhydrate	•	1	*						
de phosphoric acid phoricadd, with a purity of less than 45%					Sodium metaphosphate			-						
phonic add, with a purity of greater than 45%			*		Sodium nitrate									
phonic acid, with a purity of greater than 45%, then 70%	-				Sodium perborate Sodium peroxide	1								
sphorus sphorus pentachloride					Sodium dihydrogen phosphate		•	4						
halic acid	:	:	1	:	Disodium hydrogen phosphate Sodium temary phosphate	:		-	1					
halic anhydride					Sodium silicate									
ric acid	*	1		1	Sodium sulfate Sodium sulfide				*					
ene					Sodium superoxide	-								
yacrylonitrile vchlorinated biohenvls	•				Sodium thiosulfate		•							
					Sovbean oil									
ssium carbonate. Potassium carbonate assium acetate					Stannic chloride Saturated steam									

🔹 apply

Not applicable

Depending on operating conditions

No reference

FM–HIGH And Micatherm It is a material designed and manufactured to meet the most stringent sealing requirements. Its unique chemical formula is unmatched by other materials, and these patented materials (which can act on flat, wound, and toothed pads) have durability and reliability that can be used in all critical applications up to 1000 °C.

FM-HIGH [®] And Micatherm [®] Free of oxides.

Mica Micatherm[®] S15

Components	SS316L steel core plate bonded with mica containing a special resin
Density DIN 28090-2 (g/cm3)	1,65-1,95
Recommended max operating temperature (${\rm C}$)	900
Maximum operating pressure (bar)	60
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.1*
Stress resistance DIN 3535-6 (%)	<12
Compression rate DIN 3535-6 (%)	>16
Rebound rate DIN 3535-6 (%)	>3
Sheet dimensions (mm)	1.500x1.500 1.000x1.000
Sheet thickness (mm)	1-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Gold brown

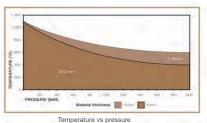
Use environment: It is recommended for applications in high temperature environment.

Mi	ica	FM	Hi	igh	
			1.11	0	

Components	SS316L steel core plate bonded biosoluble fibers and mica
Density DIN ASTMF1315 (g/cm3)	1,6 -1,9
Recommended max operating temperature ($^{\rm (C)}$)	950
Maximum operating pressure (bar)	200
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.1*
Stress resistance DIN 3535-6 (%)	<18
Compression rate DIN 3535-6 (%)	>20
Rebound rate DIN 3535-6 (%)	>2.2
Sheet dimensions (mm)	1.500×1.500 1.000×1.000
Sheet thickness (mm)	1-3
Tolerance Sheet dimensions (mm) Sheet thickness (%)	+/- 50 +/- 10
Color	Gold
Use environment:	

It is specially designed for applications in low temperature operating environment and pressure applications with strong oxidizing media.

We can provide customized sheets of other sizes and thicknesses according to customer requirements. The maximum temperature and pressure values cannot be used simultaneously. The above parameters are the parameter values for products with a thickness of 1.5mm.


Glacial acetic acid		Dye solution		methano
acetone		ethyl acetate		Methyl isobut
acetylene		ethanol		Methyl metha
Acrylic acid		ethylene glycol		dichlorometha
acrylonitrile		ethylene oxide		mineral oil
air		Ether		Mobil Heat Tra
Alkaline alkaline solution	•	ethylene		naphthalene
a uminum chloride		dichloromethane		natural gas
ammonia		fatty acid		Nitric acid (co
ammonia		Ferric chloride		Nitric acid (sm
Amy acetate		fluorine	•	nitrogen
Pentano		Fluorosilicic acid		Fuming sulfur
aniline		formaldehyde		oxygen
Aviation fue		85% formic acid		paraffin wax
beer		Formic acid 10%	•	Pentachlorop
benzene		Freon		perchloric aci
Benzoy chloride		Gasoi		petroleum
bipheny		gasoline	•	phenol
Blast furnace gas		Heating oil		phosgene
Bleach (solution)		Hydraulic oil (ethylene glycol)	٠	Phosphoric ac
Boiler feedwater		Hydraulic oil (mineral)		Phosphoric ac
brine		Hydraulic oil (phosphate ester)		phosphorus
bromine	•	hydrazine	•	Phthalic anhy
Calcium chlorate		Hydrocarbons (aromatic)		Potassium hy
Caprolactam		Aliphatic hydrocarbons (saturated)		potassium nit
Carbolic acid		Aliphatic hydrocarbons (unsaturated)		potassium per
carbon dioxide		Hydrochloric acid (37% HO)		Producer gas
carbon disulfide		hydrofluoric acid	•	pyridine
carbon monoxide		hydrogen	•	seawater
carbon tetrach oride		Hydrogen chloride	•	si icone oi
Chilean saltpeter		Hydrogen fluoride	•	Soda ash
Chlorine gas, dry	•	hydrogen peroxide		Disodium carb
Chlorine gas, wet		hydrogen sulfide		sodium carbo
Chlorinated hydrocarbons		sopropy acetate		Sodium cyani
Chloroacetic acid		sopropano		Sodium hydro
Chlorobenzene		kerosene		Sodium hydro
Chromic acid		lime	•	sodium hypoc
Copper sulfate		ubricating oil		Sodium nitrate
Creosote oi	•	engine oi		starch
Creso		Magnesium sulfate	•	steam
crude oil		malic acid		Steam conder
Cyclohexanol		methane		styrene
Dichlorobenzene		Methyl acrylate		sulfur

methano	•	sulfur dioxide
Methyl isobutyl ketone		Sulfur trioxide
Methyl methacrylate		Sulfuric acid (concentrated)
dichloromethane		Sulfuric acid (smoke)
mineral oil		Tar
Mobil Heat Transfer Oil		turpentine
naphthalene		toluene
natural gas		Urban gas
Nitric acid (concentrated at 50%)		transformer oil
Nitric acid (smoke 95%)		Tributy phosphate
nitrogen		Triethanolamine
Fuming sulfuric acid		urea
oxygen		vegetable oi
paraffin wax		Viny acetate
Pentachlorophenol		vinyl chloride
perchloric acid		Vinylidene chloride
petroleum		water
phenol		Condensed water
phosgene		distilled water
Phosphoric acid (concentrated)		Whiskey
Phosphoric acid (dilute)		Wine
phosphorus		liquor
Phthalic anhydride		xylene
Potassium hydroxide		
potassium nitrate		
potassium permanganate		
Producer gas		
pyridine		
seawater		
silicone oil		
Soda ash		
Disodium carbonate		
sodium carbonate		
Sodium cyanide		
Sodium hydroxide (40%)		
Sodium hydroxide (dilute)		
sodium hypochlorite		
Sodium nitrate		
starch		
steam		
Steam condensate		
styrene		
	-	

Air 30-1.100° C Heat rate 10° C/min

500 800 700 TEMPERATURE (*C)

TGA

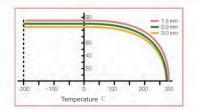
granha stror c granha stror c granha stror c municipal granha stror c municipal granha stror c municipal granha strong st

Continuous load vs time

applyNot applicable

Depending on operating conditions

SICHEM The series of products is a special board designed by our company based on bidirectional polytetrafluoroethylene, which combines excellent chemical resistance and high sealing performance SICHEM. The series of products has developed to be suitable for various process requirements from low temperature to 250° C high temperature, and can come into contact with all corrosive media (pH 0–14) SICHEM. It is the best solution to achieve the minimum creep value and sealing integrity, as it is crucial for achieving the minimum leakage rate, while traditional PTFE based materials are not suitable. With patented production processes, the materials we produce have special micropores and closed cell structures. SICHEM. The series of products combines low clamp load with high compression rate and sealing performance. These are the best solutions for sealing with irregular sealing surfaces, low low (as or as an alternative to envelope sealing).



Sichem[®] S11

Components	Modified polytetrafluoroethylene containing silica fillers
Density ASTMF 1315 (g/cm3)	2.2
Recommended operating temperature range (°C)	-260/+260
Maximum operating pressure (Bar)	80
Pressure x temperature, max. (thickness 0.8-2.0mm) (Bar x ℃)	12000
Pressure x temperature, max. (thickness 3.0mm) (Bar x ^C)	8500
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.05
Stress resistance 3535-6 (%)	<24
Compression rate DIN 3535-6 (%)	>4
Rebound rate DIN 3535-6 (%)	>1.7
PH Value range	0-14
Sheet dimensions (mm) Sheet thickness (mm)	1.500x1.500 1.750x1.750 0,75/1,0/2,0/2,5/3,0/4,0/5,0/6,0
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/-50 +/-10
Color	Pink

Use environment: It is suitable for sealing all chemicals in the pH range (0-14), excluding dissolved alkali metals, fluorine gas, hydrogen fluoride or materials that may produce these chemicals.

Sichem[®] S33

Components	Modified polytetrafluoroethylene containing barium sulfate fillers
Density ASTMF 1315 (g/cm3)	2.8
Recommended operating temperature range (C)	-260/+260
Maximum operating pressure (Bar)	80
Pressure x temperature, max. (thickness 0.8-2.0mm) (Bar x ^C)	12000
Pressure x temperature, max. (thickness 3.0mm) (Bar x C)	8500
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.005
Stress resistance 3535-6 (%)	<28
Compression rate DIN 3535-6 (%)	>4.3
Rebound rate DIN 3535-6 (%)	>2.1
PH Value range	0-14
Sheet dimensions (mm) Sheet thickness (mm)	1.500x1.500 1.750x1.750 0,75/1,0/2,0/2,5/3,0/4,0/5,0/6
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/- 50 +/- 10
Color	Beige white
Use environment:	

It is suitable for sealing all chemicals in the pH range (0-14), excluding molten alkali metals, fluorite gas, anhydrous HS and sulfuric acid.

Sichem[®] S50

Components	Modified polytetrafluoroethylene containing hollow glass fiber fillers
Density ASTMF 1315 (g/cm3)	1.4
Recommended operating temperature range (C)	-260/+260
Maximum operating pressure (Bar)	50
Pressure x temperature, max. (thickness 0.8-2.0mm) (Bar x C)	12000
Pressure x temperature, max. (thickness 3.0mm) (Bar x $^{\circ}$ C)	8500
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.05
Stress resistance 3535-6 (%)	<19
Compression rate DIN 3535-6 (%)	>32
Rebound rate DIN 3535-6 (%)	>7
PH Value range	0-14
Sheet dimensions (mm)	1.500×1.500
Sheet thickness (mm)	1.750x1.750 0,75/1,0/2,0/2,5/3,0/4,0/5,0/6,0
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/- 50 +/- 10
Color	Blue

Use environment:

It is specially designed for flanges with low bolt loading only. Such flanges may be glass tube, ceramic, plastic or deformed, including those in areas with low stress gaskets. It is suitable for sealing all chemicals in the pH range (0-14) excluding molten alkali metals, fluorine gas, hydrogen fluoride or materials that may produce these substances.

PLANI CHEM

SICHEM SOLUTIONS

Sichem [®]S59

Comp Densi Recor

tempe Maxin

Press (thick Press (thick Leaka (mg*s Stress Comp Rebo PH Va Sheet Sheet Tolera Shee Shee Color

ponents	Modified polytetrafluoroethylene containing mica fillers
ity ASTMF 1315 (g/cm3)	2.1
mmended operating erature range (℃)	-260/+260
num operating pressure (Bar)	80
ure x temperature, max. ness 0.8-2.0mm) (Bar x ்C)	12000
ure x temperature, max. ness 3.0mm) (Bar x ്C)	8500
ge rate DIN 3535-6 -rm-1)	<0.05
s resistance 3535-6 (%)	<42
pression rate DIN 3535-6 (%)	>4.8
und rate DIN 3535-6 (%)	>3.2
alue range	0-14
t dimensions (mm) t thickness (mm)	1.500x1.500 1.750x1.750 0,75/1,0/2,0/2,5/3,0/4,0/5,0/6,0
ance t dimensions (mm) t thickness (mm)	+/- 50 +/- 10
	Gray

Use environment:

It is specifically designed to reduce leakage of harmful solvents and chemicals and withstand high pressures and temperature changes, and is suitable for standard convex flange assemblies operating at constant temperatures and equipment required for extensive thermal cycling. With the characteristics of high mechanical resistance and low friction coefficient, SICHEM S59 is recommended as a linear bearing belt material and mainly used for guide rails and hooks of machine tools. It can offer low friction and stick-slip free operation, long service life and minimal wear. It is suitable for sealing strong acid, strong corrosion, aromatic and aliphatic groups, heat transfer fluids, steam and refrigerants.

14

Sichem[®] S60

Components	Polytetrafluoroethylene modified with inorganic filler micropores
Density ASTMF 1315 (g/cm3)	0.85
Recommended operating temperature range (C)	-260/+260
Maximum operating pressure (Bar)	80
Pressure x temperature, max. (thickness 0.8-2.0mm) (Bar x ்)	12000
Pressure x temperature, max. (thickness 3.0mm) (Bar x ℃)	8500
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.002
Stress resistance 3535-6 (%)	<12
Compression rate DIN 3535-6 (%)	>55
Rebound rate DIN 3535-6 (%)	>5
PH Value range	0-14
Sheet dimensions (mm)	1.500×1.500
Sheet thickness (mm)	1.750x1.750 0,75/1,0/2,0/2,5/3,0/4,0/5,0/6,0
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/- 50 +/- 10
Color	White

Use environment:

It is suitable for sealing worn contact surfaces to replace covering gaskets and load damage (low bolt loading required). It is suitable for sealing various corrosive chemical media, gases and liquids. It can be used for sealing various flange materials, including steel, glass and plastic. Even large-diameter gaskets can be installed easily.

Sichem[®] S66

Components	Polytetrafluoroethylene modified with SS316L core micropores
Density ASTMF 1315 (g/cm3)	1.2
Recommended operating emperature range (℃)	-260/+260
Maximum operating pressure (Bar)	170
Pressure x temperature, max. thickness 0.8-2.0mm) (Bar x ℃)	25000
Pressure x temperature, max. thickness 3.0mm) (Bar x $^{\circ}$)	15000
_eakage rate DIN 3535-6 mg*s-rm-1)	<0.01
Stress resistance 3535-6 (%)	<5
Compression rate DIN 3535-6 (%)	>41
Rebound rate DIN 3535-6 (%)	>6
PH Value range	0-14
Sheet dimensions (mm)	1.500×1.500
Sheet thickness (mm)	1,0/1,5/2,0/2,5/3,0/4,0/5,0/6,0
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/- 50 +/- 10
Color	White

Use environment:

It is designed for sealing flanges with high pressure and low creep. It is suitable for sealing various corrosive chemical media, gases and liquids.

Sichem[®] S91

Components	Polytetrafluoroethylene modified with barium sulfate filler micropores
Density ASTMF 1315 (g/cm3)	2.0
Recommended operating temperature range (C)	-260/+260
Maximum operating pressure (Bar)	70
Pressure x temperature, max. (thickness 0.8-2.0mm) (Bar x [°] C)	12000
Pressure x temperature, max. (thickness 3.0mm) (Bar x C)	8500
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.005
Stress resistance 3535-6 (%)	<18
Compression rate DIN 3535-6 (%)	>35
Rebound rate DIN 3535-6 (%)	>6
PH Value range	0-14
Sheet dimensions (mm)	1.500x1.500 1.750×1.750
Sheet thickness (mm)	1,5/2,0/2,5/3,0/4,0/5,0/6,0
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/- 10 +/- 50
Color	White

Use environment:

It is designed to achieve high compression rate, high rebound rate and high chemical inertness. This microporous structure can offer high compression arte and high sealing at low bolt torque. In this way, the sealing can be achieved before the material reaches the yield point in order to serve other mechanical properties. The chemical additions have been developed that can withstand highly aggressive chemical environments.

Sichem[®] S92

Components	Polytetrafluoroethylene modified with graphite micropores
Density ASTMF 1315 (g/cm3)	1.45
Recommended operating temperature range (C)	-260/+260
Maximum operating pressure (Bar)	50
Pressure x temperature, max. (thickness 0.8-2.0mm) (Bar x C)	12000
Pressure x temperature, max. (thickness 3.0mm) (Bar x ℃)	8500
Leakage rate DIN 3535-6 (mg*s-rm-1)	<0.005
Stress resistance 3535-6 (%)	<27
Compression rate DIN 3535-6 (%)	>42
Rebound rate DIN 3535-6 (%)	>12
PH Value range	0-14
Sheet dimensions (mm) Sheet thickness (mm)	1.500×1.500 1.750×1.750 1,5/2,0/2,5/3,0/4,0/5,0/6,0
Tolerance Sheet dimensions (mm) Sheet thickness (mm)	+/- 10 +/- 50
Color	Black

Use environment:

It is designed for applications with high rebound rate and low bolt torque. It is suitable for glass lined, ceramic and plastic flanges. It is suitable for sealing acids, alkalis, hydrocarbons, petroleum derivatives and finished gases with medium and low concentrations.

We can provide customized sheets of other sizes and thicknesses according to customer requirements. The maximum temperature and pressure values cannot be used simultaneously. The above parameters are the parameter values for products with a thickness of 1.5mm.

	SICHEM® S11- S90 SICHEM® S50 SICHEM® S33 - S91 SICHEM® S59 - S93 SICHEM® S59 - S93	SICHEM® 500	SICHEM® S11- S90	SICHEM® S50	SICHEM® S33 - S91	SICHEM® S58 - S60	SICHEM® S59 - S93	DIAPHRAGM	SICHEM® S66		SICHEM® S11- S90	SICHEM® S50	SICHEM® S33 - S91	S58 -	6	DIAPHRAGM	SICHEM® S66
icetaldehyde		Calcium chloride Calcium cyanamide	- almatica	and so the second	•	•	Contractory of the	-	and and and	E85 (85% ethanol, 15% gas)		-		-	•		
Acetamide		Calcium cyanamide		:			:	•	:	Butane oxide	:	:	:	:		:	:
Acetic acid		Calcium hydroxide						:	-	Ethane							•
Arabic anhydride		Calcium hypochlorite					•			Ethers		٠			•		•
Acetone Acetone alcohol		Calcium nitrate		:	:	:	•	:	:	Ethyl acetate Ethyl acrylate	•	٠					•
Acetophenone	::::::	Sucrose wine Caprolactam					•	•	•	Ethyl acrylate Ethyl alcohol	•	٠			•	•	•
vcetopnenone Vcetaminofluorene		Caprolactam Captan		•		•	:	:	:	Ethylaconol Ethylbenzene		•	•	٠	•	•	•
icetylene		Captan Carbarb		:	1	:				Ethyl carbamate	•	:	:	:	:	:	:
Acrolein		Carboxylic acid, phenol							21	Ethyl cellulose	:						21
Acrylamide		Dry carbon dioxide							:	Chloroethane		:		•••		:	:
korylic acid		 Wet carbon dioxide 								Ethyl ether							
crylic anhydride		 Carbon disulfide 								Ethyl caproate							:
crylonitrile		Carbon monoxide								Ethene	••••	• • •		:			•
idipic acid		Carbon tetrachloride				٠				Vinyl bromide	٠	•				•	
dipic dinitrile		Carbon addition			:	٠	•		:	Ethylene dibioamide	:	•	:	•		:	:
úr Jlyl acetate		Carboxysulfide Castor oil					•		*	Dichloroethane Ethylene glycol	•		•	•	•		
llyl acetate ropylene chloride		Castor oil Catechol	•	:	:	٠	:	:	•	Ethylene glycol Ethylimide	٠	*	:	:	:	:	:
ropyiene cnionde Jlyl methacrylate		Catechol Caustic soda		121		:			:	Ethylene oxide	-			:	:	:	
luminium chloride		Celane							1	Vinyl thiourea	-			•			
uminium fluoride	::::::	Chinese wood oil Chioramine			1		-			Ethyridine chloride							:
luminum hydroxide (solid)		Chloramine								Ferric chloride	• • •						
folten aluminium		 Chlorazolac (Agua regia) 		:	18.					Ferric phosphate		••••				:	:
Numinium nitrate		Chlordane								Ferric sulfate			•				
Auminium sulfate		 Dry chlorinated solvent 				•				Fluorine gas				:			:
fitriol		 Wet chlorinated solvent 				٠			•	Fluorine, liquid	•	٠		•			•
Paracetamol		Dry chlorine		:		٠	:			Fluorine dioxide Formaldehyde	•	•					
mmonia, below 70°C	::::::	Wet chlorine Chlorine dioxide		:	:	•	:	:	:	Formaldehyde	•	•	•	:	:	:	•
ummonia, liquid, anhydrous	::::::	Chlorine dioxide Chlorine trifluoride					•	•	÷.	Fuel		•	•			•	•
unmonium chloride		Chlorine trifluoride Chloroacetic acid		:	:	:	:	:	:	Fuel, acid	••••	:	:	:	:	:	:
Ammonium hydroxide	::::::	Chlorophenone	12						-	Refined gasoline	2.1			1			21
mmonium nitrate		Chlorobenzene								Gelatin			•	:		:	:
mmonium monophosphate		Chlorobenzoate								Glucose							
Nammonium phosphate		 Chloroethane 							•	Glycerin							
mmonium phosphate	::::::	Vinyl chloride								Ethylene glycol	:	:					••••
mmonium sulfate		Chloroform								Grain wine	•			:			•
unyl acetate		Chloromethyl methyl ether (CMME) Chloric acid								Grease, oil base							•
unmonium sulfate Iniline, aniline oil	::::::	Chloric acid	•		٠	٠	٠	•	•	Green sult	•						•
utline, antine of utline hydrochloride	::::::	Chloroprene		•		٠	•		•	Heptachlor Heptane	•	•		•	:	:	:
niine dye	::::::	Chlorosulfonic acid	•	•	:	٠	:		:	Heptane	•	•	•	:	•	•	•
niine aye nisvlamine	::::::	Chromic acid Chromic liver			1	•	:		:	Hexachloropenzene	•	•				•	•
ntimony trichloride		Chromium sesquioxide		:	9	:	-	:	1	Hexachlorocyclopentadiene		:	:	:	:	:	
Aqua regia	::::::	Citric acid		121						Hexachloroethane	:					C .	0 I
Polychlorinated biphenyls or alachlor		Coke oven gas		:	:		:	:	:	Cetane		:		:	:	:	
Aromatic hydrocarbon		Cupric chloride								Hexamethylene hexacyanate							
Arsenate acid	::::::	 Cupric sulfate 							•	Hexamethylphosphamide				:	•	:	
Arsenous acid		Corn oil				٠	:	٠		n-hexane	•	• • •					•
Asphalt		Cottonseed oil 10				٠	•	:	:	Hexanone	•	٠				:	•
wiation gasoline Iarium chloride		Creosote							•	Mineral hydraulic oil	•			•			:
arium chionde arium hydroxide	::::::	Cresol, cresol acid Crotonic acid	•			٠	٠		•	Phosphate ester Hydrazine	٠	•		•	•		•
arium nyoroxide arium sulfide		Crotonic acid		:		•	•		-	Hydrazine Hydrobromic acid	•	•		•	•	•	:
laikon	::::::	Crude oil		•	1	٠	:		•	Hydrobromic acid Hydrochloric acid	:	:	:	:	•	•	•
eer	::::::	Isopropylbenzene				•	•		•	Hydrochloric acid, dry	•	•	•			•	•
enzaldehyde		Cyclohexane Cyclohexanol		:	*		•		•	Hydrochloric acid, 20%	-	*		•	2	•	:
enzene	1 1 1 1 1 1	Ovdobevanone								Hydrocyanic acid			1				:
enethane sulfonic acid		Cyclohexanone Diazomethane		:	:	:	:	:	:	Anhydrous hydrofluoric acid	:	:	:	:	:	:	:
enzidine	1 : : : : : :	Diazomethane Dibenzofuran	***********************************							Hydrofluoric acid, below 65%, above 70 %							
enzoic acid		Dibenzyl ether							•	Hydrofluoric acid, 65% to anhydroux, above 70 🖓							
nzonitrile		Bromopropage								Hydrofluoric acid, maximum anhydrous, 70 °C and below		••••		•		:	:
nzoquinone		Dibromoethane							•	Hydrofluorosilicate acid							
nzene trichloride		 Dibutyl phthalate 		:	1		:	:	:	Hydrofluorosilicate acid		•	:	:	:	:	:
enzoyi chloride enzyl alcohol		Dibutvi sebacate	•			٠				Hydrogen							•
	::::::	Dichlorobenzene Dichlorobendiene		•	٠	٠	•	•	•	Hydrogen bromide	•	•					:
nzyl chloride odiesel (B100)		Dichlorobendiene				٠	•			Chlorine fluoride Hydrogen dioxide, 10%	:	:	•	:	•	:	•
idiesel (B100) iffenny	1 1 1 1 1 1	Dichloroethane		:			•		•	Hydrogen diaxide, 10% Hydrogen peroxide, 10-90%			•	•			•
tenny ; (2-chloroethyl) ether	::::::	Dichloroethylene			*	.0			2	Hydrogen peroxide, 10-90% Dry or wet hydrogen sulfide		•	:				•
s (chloromethyl) ether	::::::	Dichloroethyl ether Dichloromethane		•	:	:	:	:	1	Hydroquinone	•				:	:	:
-(2-ethylhexyl) phthalate		Dichloromethane Dichloropropane		:	:	:	:	:	:	lodine pentafluoride	•	:	:	1	:	:	:
ck vitriol	::::::	Dichloropropane Dichloropropylene	12	:	1	:	:	•	:	Chloromethane	-		:	-			
ist fumace gas		Dichlorphos							-	Isobutane							-
each (sodium hypochlorite)		Dierel					2		•	Isooctane	•	:					•
iler feed water		Diethanolamine							-	Isophorone							
ax		Diethylaniline Diethyl carbonate		:	•		:	:		Isopropyl alcohol	:	:	:	:	:	:	:
ric acid							•		2	Aviation fuel		•		٠		•	•
it water (sodium oxide)		Distbyl sulfate		•		•				Kerosene	•						:
omine omine trifluoride		Dimethoxybenzaldehyde Dimethylaminoazobenzene			٠		•		•	Lacquer solvent	:	:		٠	•		•
omine trifluoride omoform		Dimethylaminoazobenzene							:	Lacquerware		•		:	•	:	
omotorm omomethane		Dimethylaniline					•		*	Lactic acid below 70 C		:					
omomethane itadiene		Dimethylbenzidine		•		•	•		•	Lactic acid above 70 C Lime saltpeter	•			•		•	•
ladiene		Dimethylcarbarnyl chloride	•	:	٠	٠	•		:	Lime saltpeter Lindane	•	:	:	:	:	:	*
fanone	::::::	Dimethyl ether Dimethyl formamide	•				•		•	Earseed oil	:						
unone tyl acetate		Dimethylformamide					•		*	Flaxseed oil Liquefied petroleum gas	٠		•			•	:
tanol		Dimethyl phthalate		•		•	•	•	•	Liquefied petroleum gas Lithium bromide	•	•	•	٠	٠	•	•
Mamine	::::::		•	•		•	•		•	Lithium	•	٠		•	٠	•	•
t-butyl amine				:	:	•	:	:	:	Refined oil	•	•		•	•	:	:
yl methacrylate						•				Lubricate mineral or petroleum type	:	••••	••••	:		:	:
rric acid	:::::	Dioxane Epichlorohydrin		:	:	•	:	:	:	Acid	:				:	:	:

	SICHEM® S11-S90	CICLIENA® CED	000	S33 -	SICHEM® S58 - S60	SICHEM® S59 - S93	DIAPHRAGM	SICHEM® S66		SICHEM® S11- S90	SICHEM® S50	SICHEM® S33 - S91	SICHEM® S58 - S60	SICHEM® S59 - S93	DIAPHRAGM	SICHEM® S66		SICHEM® S11- S90	SICHEM® S50	SICHEM® S33 - S91	SICHEM® S58 - S60	SICHEM® S59 - S93	DIAPHRAGM	CICHEM® CAR
Magnesium chloride		:	•	•	•	:	• •	•	Phosphine Crude phosphoric acid	•	•	:	•		:	•	Sodium hypochlorite	:	٠	•	:	•	•	
Magnesium hydroxide Magnesium sulfate	:			:	:	:	:		Phosphoric acid, with a purity of less than 45%	:	:	:	:		:	:	Sodium metaborate peroxyhydrate Sodium metaphosphate	12	:	:	:	:	:	
Maleic acid	1								Phosphoric acid, with a purity of greater than 45%								Sodium nitrate							
Maleic anhydride				•					Phosphotic acid, with a putity of greater than 40%, more than 70%	•						•	Sodium perborate							1.
Mercuric chloride			•	•		٠			Phosphorus Phosphorus pentachloride	٠		٠		•	•		Sodium peroxide		•	٠	•	٠		1
Mercury		1		:	:	:	1	:	Phthalic acid	:	:	:	:	:	:	-	Sodium dihydrogen phosphate Disodium hydrogen phosphate		•	:	:		:	
Methane	:	:							Phthalic anhydride							:	Sodium temary phosphate					:		
Methanol			•	•					Picric acid Picric acid solution								Sodium silicate							
Methoxychlor				•	•	٠	٠		Picric acid solution Pinene	•		٠	•		•		Sodium sulfate		•	•	•	٠		1
Methacrylic acid Carbinol		1		:	:	:	:	*	Piperidine		:	:	:	:	:	:	Sodium sulfide Sodium superoxide	:	:	:	•	•	:	
Methylaziridine									Polyacrylonitrile								Sodium thiosulfate							
Bromomethane			•	•					Polychlorinated biphenyls				•	٠			Soybean oil							
Chloromethane				•		1			Potassium carbonate. potassium carbonate Potassium acetate			٠	:				Stannic chloride	:	•	:	:	:	:	
Methyl chloroform	-	:		:		:	:	:	Potassium dichlorate	:		•	:	:	:	:	Saturated steam Superheating		٠		•	•	•	
4, 4-methylene bis (2-chloroaniline)	12			21	1	1		÷.	Potassium acetate		1			2	-	-	Stearic acid							1
Dichloromethane				-	-			3	Potassium dichlorate	ł		9		2	-	-	Stoddard solvent			1				
Methylene diphenylamine				•			٠		Potassium chlorate, red Potassium cyanide								Styrene		-					1.4
Methylene diphenyl diisocyanate		1		•	•				Potassium oyanide Potassium dichlorate	•	•	•	•	•	•	•	Styrene oxide		•	•	•	٠		
Methyl ethyl ketone (MEK) Methylhydrazine	:	1		:	:	:	:	:	Potassium	:	1	-	:		1	:	Sugar Sulfur oxide	:	:		:	•	:	1 1 1 1
Methylhydrazine Iodomethane		:			:	:		1	Potassium hydroxide		:	-		6		-	Sultur oxide Sulfur dioxide	1		:	:	:	:	
Methyl isobutyl ketone (MIBK)									Potassium iodide Potassium nitrate								Quebrith							
Methyl isocyanate		•		•	•		٠		Potassium nitrate Potassium permanganate		•	•		•	•		Dry sulfur tricxide		•					
Methyl methacrylate	•		•	•	•		٠	•	Potassium sulfite	٠		٠	•	٠	•		Wet sulfur trioxide		•		•			
Methylpyrrolidone	:	:		:	:	:	:	1	Gas production	:	:	:	:	:	:	:	Sulfuric acid, 10%, below 70 C Sulfuric acid, 10%, above 70 C	1	:	:	:	:	:	
Methyl butyl ether (MTBE)								÷.	Propane		1						Sulfuric acid, 10-75%, below 260 C		12	12		1		
Cow's milk									Propane sulfonolactone								Sulfuric acid, 75-89%, below 270 °C							
Mineral oil		:		•				•	β-propanolactone Propanal			٠					Sulfuric acid, 75-89%, 70 °C to 260°C		•					
Molten alkali metal			•	•	•	٠			Propyl alcohol		•	٠			٠		Furning sulfuric acid			•	•	٠	٠	
Monomethylamine	:	:		•	•	:	:		Propyl nitrate		:	1	:	:	:	:	Sulfurous acid	:	:	:	:	:	:	
Thiocyanic acid Naphtha				21		1			Propylene	2		•		-			Tartaic acid	1		12				
Naphtha Naphthalene									Propylene dichloride Propanediol							:	TCDB versus dioxins							1
Naphthol				•	•				Propylene oxide			٠		٠			Tert-butyl amine						•	1
Natural gas	•	1		:	:				Preimine	•	:	:	:		:	:	Tetrabromoethane		:	:	:	۰	:	1
Nickel chloride	1				:	:	:	1	Alginic acid, hydrocyanic acid	•	:	:		:	:		Tetrachloroethane	:	:	:	:	:	:	
Nickel sulfate		:							Pyridine Gourno							-	Tetrahydrofuran, THF							
Nitric acid, less than 30%									Quinone	•		•					Sulfoxide chloride							
Nitric acid, greater than 30%				•	•	•			Type 10 refrigerant	:	•	٠			•		Titanium sulfate		•	•	•		٠	
Nitric acid, coarse		1		:	•	:	:	1	Type 11 refrigerant	:		•	:	:	:	:	Titanium tetrachloride	:	:	:	:	:	:	1
Nitric acid, red smoke	:			:	:	1			Type 12 refrigerant	:	1	1	:	2	-		Toluene Toluidine amine	1	:	:		:	:	
Nitrobenzene									Type 13 refrigerant Type 13B1 refrigerant								Toluene diisocyanate							
Nitrobiphenyl Nitrobutanol									Type 21 refrigerant	:							Toluene sulfonic acid					٠		
Nitrobutanol Calcium nitrite				•	•		٠	•	Type 22 refrigerant			٠	•				Toluidine amine		٠	٠	•			1
Nitrogen		1		:	:		:	1	Type 23 refrigerant		:	:	•	:	:	1	Toxic film Transformer mineral oil	1	:		:	:	•	
Nitrogen tetraoxide	1	:				:			Type 31 refrigerant	•			:			•	Transmission of A	:		:			:	
Nitrite hydrochloride									Type 32 refrigerant Type 112 refrigerant								Trichloroacetic acid							
Nitromethane			6 I I	•					Type 113 refrigerant								Trichlorobenzene	1	٠		•			
2-nitro-2-methylpropanol				•	٠				Type 114 refrigerant		•	٠	•		٠		Trichloroethane			٠		٠	٠	
Nitrite (Aqua Regia)	:	1		•	•				Type 114B2 refrigerant	:	:	:	:	:	:	:	Hulk Taylorner	:	:	:	:	:	:	
Nitrophenol	12			:	:	:	:	3	Type 115 refrigerant	-	1		:		:	2	Trichlorophenol Tricresyl phosphate			1		:	:	
Nitropropane									Type 123 refrigerant Type 124 refrigerant								Triethanolamine							
Nitrosodimethylamine				•					Type 125 refrigerant	:		•				•	Aluminium triethyl	:						
Nitroso-methylurea Nitroso-morpholine				•		٠	٠		Type 134a refrigerant		•	٠	•	٠	٠		Triethylamine		٠	•	•	٠		
Nitroso-morpholine Nickel nitrate (calcium nitrate)	:	:		:	•	1	٠	*	Type 141b refrigerant		:	1	:	:	:		Trifluralin Trimethylpentane		:	:	:	:	:	
Norwegian saltpeter (calcium nitrate)	:			•	:		:	-	Type 142b refrigerant Type 143a refrigerant		:		:	-	:	:	Turpentine	:		:	:			
Octadecyl alcohol									Type 152a refrigerant								Urea, below 70°F	1				:	•	
Octane				•					Type 218 refrigerant								Urea, above 70°F							
Oil				•	•				Type 290 refrigerant (propane)	•	•	•		•	٠		Paint					٠		
Oils, animals and vegetables		1		•	*		1		Type 500 refrigerant	•	•	•	•	•	•	:	Vegetable oil		•	•		٠		
Oleic acid	-				:	1		-	Type 502 refrigerant	:	:	:	:	:	:	:	Acerbic	1	1		•	:	•	
Oiliness	1.			21		1	1	÷.	Type 503 refrigerant Type 507 refrigerant					2		2	Vinyl acetate Vinyl bromide				1	-		
o-chlorobenzene									Type 717 refrigerant (ammonia)								Vinyl chloride							
Oxalic acid				•					Type 744 refrigerant (carbon dioxide)							:	Vinylidene chloride							
Oxygen, gas (BAM approved)				•	٠		٠		Type C316 refrigerant				•	•	٠	•	Vinyl methacrylate vinegar		•	٠	•	٠		
Ozone	:			:	:	:	:	:	Type C318 refrigerant	•	1	1	:	:	:	:	Water, acid ore, containing oxidized salt	:	:	:	:	•	:	
Palmitic acid		1		•	:	:	:	1	Type HP62 refrigerant Type HP80 refrigerant	:	:	:	:	:	:		Water, acid ore, no oxidized salt Distilled water	:	:	:	:	:	:	
Paraffin								12	Type HP81 refrigerant					2		:	Return condensate		1		1			
Parathion				•					Salt water								Seawater							
p-xylene Pentachloronitrobenzene				•	•				Saltpeter, potassium nitrate		•						Tap water				•			
Pentachioronitrobenzene Pentachiorophenol		:		•	•			•	Sewage treatment	4			•				Whiskey		٠	٠		٠	٠	
Pentachiorophenol	:			:	-	1		4	Silicone oil Silver nitrate	*	1	:	:	:	1	-	Spirit	:	1	:	:	*	:	
Persane Perchloric acid	1	:		:	1	:	:	4	Silver nitrate Baking soda, sodium carbonate	:	:	:	:	:		:	Xylene Zinc chloride	:	:	:	:	:	:	
Perchloroethylene									Baking soda			-					Zinc sulfate			2				
Crude all		1							Sodium bisulfate (dry)								L		1	1		1	1	1
Refined petroleum				•					Sodium bisulfite			•					2							
Phenol				•	•	٠			Sodium chlorate	٠		٠	•	٠		•	 Applicable 							
Phenylenediamine				•	•	•			Sodium chloride	•	•	•	•	٠	•	•	 Not applicable 							
Phosgene	•			•	:	:	:	1	Sodium cyanide Sodium	•	•	:	:	•	:	:	Depending on operating co	ndition	s					
Phosphate ester		1.5		-																				

Flexsound ® Metal wound gasket

describe

The gasket is made of spiral metal material (strip) and non-metallic material (filler). SWG can have an outer ring and an inner ring. Metal wound gaskets can meet the most demanding pressure and temperature conditions.

authentication

VDI 2440- Emission Control

colour

For ease of identification, we have used a color coding system on the outer side of the fixed core ring, which can fully identify the metal strip material and filler material.

Technical Information

Can withstand high temperature and high pressure, depending on the selected material.

Available gasket materials

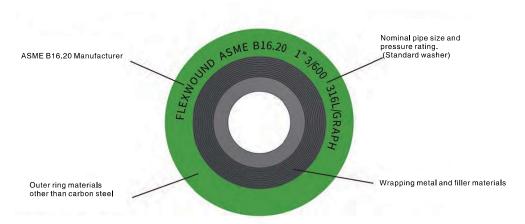
Metal winding materials	Filler materials	Guide ring materia	als
Standard materials Stainless steel 316L 304 Stainless steel Inconel® 625 304L Inconel® 625 309L Hastello® 627 316 T1 Incorro® 800 321 Incorro® 825 347 Duplex 130 Super Duplex 140 Zirconium® Monel® 11 Copper Titanium® Phosphor bronz Nickel® Carbon steel nconel® 600	Standard materials FLEXIGRAF [®] Graphite Other materials MICATHERM SICHEM [®] Polytetrafluoroethylene Bioceramics	Standard materials Carbon steel Other materials Stainless steel TYPE 316 L 304 304L 309 310 316 TI 321 347 430 410 Alloy 20 Monel 11 Titanium® Nickel® Inconel® 600	Inconel® 625 316 L Hastello® 82 Hastello® 6276 Inkoro® 800 Inkoro® 825 Duplex Super Duplex Zirconium® Tantalum® Copper Phosphorus bronze

Materials should be selected based on operating temperature and chemical compatibility. If you have any questions, please contact the technical department.

type

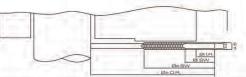
The GRI (IOR) type GRI metal spiral wound gasket is a standard type gasket with inner and outer rings. This gasket has the best sealing characteristics and the highest safety for flange joints with flat and raised flanges.

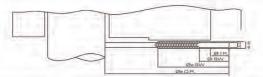
The GR (OR) type can precisely align the sealing element with the flange surface through bolts by using an appropriately sized centering ring. A universal gasket suitable for flat and raised face flanges.



RR (R) type spiral wound gasket, without accessory ring, suitable for applications with concave convex seams and operations with compression terminators. If the gasket thickness is 4.5 mm, it is recommended to use a groove with a depth of $3.3 (\pm 0.1)$ mm to provide compression termination.

The RI (IR) type RL type metal wound gasket with inner ring is designed specifically for convex and concave flanges, and the inner ring provides radial restriction to prevent the bursting of spiral components.

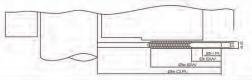

ASME B16.20 API Stamping Requirements



The dimensional data of GR and GRI types comply with ASME B16.20 standards and are applicable to ASME B16.5 flanges

			1/4"			1/2				3/4			1"						
120.1	1.000			1003 (Bash	- alust		1	S.J. Carl	1.000	1	100000	100.000	and the T		1 1 1 1 1 1 1 1	1.0.0.00			
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe O			
150	100	15-5-1	Land I	1.10		1101	1.000	47,8	10000	The second second	11.00	57,2	-	16.79	111111	66,			
300	X	12,7	22,2	44,5	17.1			54,1				66,8				73,			
400	X				14,3	19,1	31,8		20,6	25,4	39,6		27	31,8	47,8				
600	X	1	1.00		1.0	1.10	1.1	1.000					1.5	3.291	1.1				
900		-	XXX	-	5.00		10.01	63,5	And a second			-							
1500	-	-	XXX	-								69,9				79,5			
2500		-	XXX	-	1.0		1.1.6	69,9	1.		1	76,2				85,9			
2300	10000	-	AAA			-		03,5				10,2			and the state	0.0,0			
			1 1/4"		1	1	1/2"				2"			21	2"				
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe O			
150	UT III	01011	beon	76,2	44,5	54,1	Dean	85,9	55,6	69,9	Dean	104,9	66,7	82,6	De Sit	124			
300	20.1	47.0	1.1	10,2	44,5	34,1	1.1.1.4		55,0	09,9	1.	104,5	00,1	02,0	110.7.4	124			
	38,1	47,8	12.1				100	95,3	1.1				1000						
400	100		Sec.	82,6							1000	111,3				130,			
600			60,5				69,9				85,9	1			98,6	1.1.1			
900			11.1	88,9		and the second	1.4	98,6	Sec. 2	Sec. 1	- 57.0		63,5	Jan al		1000			
1500	33,4	39,6			41,3	47,8	1.0	1	52,4	58,7		143		69,9	ter (na l)	165,1			
2500			-	104,9	1.121		1	117,6			1	146			1.5-3	168,			
		-	3"			3	1/2"		-	-	4"	-		41	/2"				
1.01	-		-			-	1				-		-	-					
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe Of			
150	81,3	San St		136,7	102,6*	114,3		161,9	106,5	127	1000	174,8	128*	139,7	1 mile	177,			
300	-	101,6	1.0	in and			133,4	165,1	-	-	10.01	181,1		100	165,1	196,			
400		1	1.000	149,4	1.5.5	10.01			100	1000	1000	177,8	1000	122		193,			
600			120,7	Sec. 1	92*	104,8	1000	161,9	102,6	120,7	149,4	193,8	122*	134,9		209,			
900	78,74	95,3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	168,4	1000			190,5	0.0000000000000000000000000000000000000	11000	1.00	206,5	1.2.1.2.1		11.19	238,			
1500				174,8	1		1.1.1	187,5	97,8	117,6		209,6		1.0					
2500	-	93,2		196,9	-	v	XX	10113	51,0	111,0		235	-	v	xx	-			
2300	-	53,2		150,5	-	^	^^.	_	1.11	1	1	200							
			5"		-		6"	-		8			10"						
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe Ol			
150	131,8	155,7		196,9	157,3	182,6		222,3	215,9	233,4		279,4	268,3	287,3	1	339,			
300		0.000	1	215,9		Contra Contra	1.11	251	10000	2004	263,7	308,1	C. C.	Croite.	317,5	362			
400			1	212,9	-			247,7	205,8	225,6	1	304,8	255,3	274,6		358,			
600	128,3	147 6	177,8	241,3	154,9	174 0	209,6	266,7	205,0	225,0		320,8	200,0	214,0		400,			
	120,5	147,6	111,0		154,9	174,8	209,0		-	-	-		-			400,			
900				247,7	1000.00	CALL !!		289,1	(and a state	222,3	in the second	358,9	Same	276,4	311,2	100			
1500	127-6.4	9.05		254	147,3	171,5		282,7	196,9	Sec. 1	257,3	352,6	246,2	266,7	11	435,			
2500	124,5	143	1.0.0	279,4		1. 11		317,5		215,9		387,4	1	270	1	476,			
			12"			14				1	5"			18		-			
ASA		øi SW	øe SW	øe OR	øi I.R.	øisw	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi 1.R.	øi SW	øe SW	øe Ol			
					Ø11.R. 349,3						N6 2M				DE 2M				
	øil.R.		374 -		149 3	371,6	406,4	450,9	400,1	422,4	Sec. 1	514,4	449,3	474,7	Land to	549,			
150	ØIT.R. 317,5	339,9	374,7	409,7	51515			485,9	1		463,6	539,8	-	-	527,1	596,			
150 300		339,9	374,7	422,4	100.00100	(and the second				-	1.00				10000	593,			
150 300 400	317,5		374,7	422,4 419,1	342,9	362		482,6	389,9	1		536,7	438,2	469,9	1.0				
150 300		339,9	374,7	422,4	100.00100	362			389,9	412,8		536,7 564,2	438,2	469,9					
150 300 400	317,5	339,9	374,7	422,4 419,1	100.00100	362 355,6		482,6	389,9 374,7	412,8	457,2		438,2	469,9	520,7	612,			
150 300 400 600 900	317,5	339,9 327,2		422,4 419,1 457,2 498,6	342,9	355,6	400,1	482,6 492,6 520,7	374,7			564,2 574,8			520,7	612, 638,			
150 300 400 600	317,5	339,9 327,2 323,9	374,7 368,3	422,4 419,1 457,2 498,6 520,7	342,9	355,6 362	400,1	482,6 492,6		406,4	457,2	564,2		463,6		612, 638,			
150 300 400 600 900 1500	317,5	339,9 327,2	368,3	422,4 419,1 457,2 498,6	342,9	355,6 362 X	xx	482,6 492,6 520,7	374,7	406,4		564,2 574,8		463,6	520,7 XX	612, 638, 704,			
150 300 400 600 900 1500 2500	317,5 307,4 292,1	339,9 327,2 323,9 317,5	368,3 20"	422,4 419,1 457,2 498,6 520,7 549,4	342,9 320,8	355,6 362 X	XX 4"	482,6 492,6 520,7 577,9	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 600 900 1500	317,5	339,9 327,2 323,9	368,3	422,4 419,1 457,2 498,6 520,7	342,9	355,6 362 X	xx	482,6 492,6 520,7	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 600 900 1500 2500	317,5 307,4 292,1 øi I.R.	339,9 327,2 323,9 317,5 øi SW	368,3 20" øe SW	422,4 419,1 457,2 498,6 520,7 549,4 øe OR	342,9 320,8	355,6 362 X 2 øi SW	xx 4" øe SW	482,6 492,6 520,7 577,9 øe OR	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 600 900 1500 2500 ASA 150	317,5 307,4 292,1	339,9 327,2 323,9 317,5	368,3 20"	422,4 419,1 457,2 498,6 520,7 549,4 øe OR 606,6	342,9 320,8 øi 1.R.	355,6 362 X	XX 4"	482,6 492,6 520,7 577,9 øe OR 717,6	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 900 1500 2500 ASA 150 300	317,5 307,4 292,1 øi I.R. 500,1	339,9 327,2 323,9 317,5 øi SW 525,5	368,3 20" øe SW	422,4 419,1 457,2 498,6 520,7 549,4 Øe OR 606,6 654,1	342,9 320,8 øi 1.R. 603,3	355,6 362 X 2 øi SW	xx 4" øe SW	482,6 492,6 520,7 577,9 Øe OR 717,6 774,7	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 900 1500 2500 ASA 150 300 400	317,5 307,4 292,1 øi I.R.	339,9 327,2 323,9 317,5 øi SW	368,3 20" øe SW	422,4 419,1 457,2 498,6 520,7 549,4 Øe OR 606,6 654,1 647,7	342,9 320,8 øi 1.R.	355,6 362 X 2 øi SW	xx 4" øe SW	482,6 492,6 520,7 577,9 Øe OR 717,6 774,7 768,4	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 600 900 1500 2500 ASA 150 300 400 600	317,5 307,4 292,1 øi I.R. 500,1 489	339,9 327,2 323,9 317,5 øi SW 525,5	368,3 20" øe SW	422,4 419,1 457,2 498,6 520,7 549,4 Øe OR 606,6 654,1 647,7 682,8	342,9 320,8 øi 1.R. 603,3	355,6 362 X 2 øi SW	xx 4" øe SW	482,6 492,6 520,7 577,9 Øe OR 717,6 774,7 768,4 790,7	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			
150 300 400 900 1500 2500 ASA 150 300 400	317,5 307,4 292,1 øi I.R. 500,1	339,9 327,2 323,9 317,5 øi SW 525,5	368,3 20" øe SW	422,4 419,1 457,2 498,6 520,7 549,4 Øe OR 606,6 654,1 647,7	342,9 320,8 øi 1.R. 603,3	355,6 362 X 2 øi SW	xx 4" øe SW	482,6 492,6 520,7 577,9 Øe OR 717,6 774,7 768,4	374,7	406,4	457,2	564,2 574,8		463,6		612, 638,			

The dimensional data of GR and GRI types comply with ASME B16.20 standard and are applicable to ASME B16.47 A-series flanges



	The second second	22	**		-	2	6"		1	2	28"			30)"	
ASA	øil.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR
150			610	660,4	654,1	673,1	704,9	774,7		723,9	755,6	831,9		774,7	806.5	882,6
300	x	577,9		704.8				830	704,9			898.6				952,5
400	X	Column V	628,7	701,7	660,4	685,8	736,5	831,9	711,2	736,6	787.4	892,2	755,7	793,8	844,5	946,1
600	x		1000	733,4	647,7	124-34		866,8	698,5		A Service	911,4		13-578		971,5
900	100.0		XXX		666,8		1.	882,6	711,2		1 1	946,1	774,7			1008,9
_		-		-		34" 36" 3										
	1.1.1	32			1	34			10.00	36	1			38	1 ⁷⁷	
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR
150	806,5	825,5	860,6	939,8	857,3	876,3	911,3	990,6	908,1	927,1	968,3	1047,7	958,9	977,9	1019	1111,2
300	a may			1000,1				1057,2	1000		-	1117,6			1016	1054,1
400		-	- 11	1003		100	1.1-1.1	1054	14.54	955,7	1006,5	H LE VI	952,5	971,6	1022,3	1073,1
600	812,8	850,9	901,7	1022	863,6	901,7	952,5	1073	917,6		1	1130,3		990,6	1041,4	1104,9
900	1.000	-		1028,6		1.2	1	1136,6	920,8	958,9	1010	1200,1	1009,7	1035	1086	1200,1
	1	40		1.00		42				44			22.5	46		1
			-	1	Contraction in			La martin			-	lar to 2 mil				
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR
150	1009,7	1028,7	1070	1162	1060,5	1079,5	1124	1219,2	1111,3		1180	1276,3	1162	1181	1229	1327
300	1003,3	1022,4	1	1114,4	1054,1	1073,2	1121	1165,2	1105	1130,3	1.11	1219,2	1153	1178		1273
400	1000,2	1025,5	1076,3		1051	1076,4	1127	1177,9	And the		1181,1		1168,5	1194	1244,5	1289
600	1009,7	1047,7	1098,5	1155,7	1066,8	1105	1155,7	and the second second	1111,3	1162	1212,8	1270	1162	1213	1263,7	1327
900	1060,5	1098,5	1149,3	1250,9	1111,3	1149,3	1200,1	1301,7	1155,7	1206,5	1257,3	1368,4	1219,2	1270	1321	1435
-		48	"	-	1	50			1	52	2"	54"			."	
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øil.R.	øi SW	øe SW	øe OR
150	1213	1232	1279,5	1384,3		1283	1333,5	1435	1314,5	1333,5		1492,3	1359	1384,3	1435	1549,4
300	1209,7	1235	1286	1324	1244,6	1205	1000,0	1378	1321	1000,0	1001,0	1428,8	1000	1001,0	1100	1492,2
400	1206,5	1244,6	1295,4	1346.2		1295,4	1346.2	1403	1308	1346	1397	1454.2	1352.6	1403,4	1454.2	
600	1219,2	1270	1321	1390.6	1270		1371,6	1447.8	1321	1371,6	1422,4	1498,6	1378		1479,5	
900	1270	1321	1371,6	1486			XX			and the second second	XX			and the second second	KX	1
_		-			_			_								-
	1000	56				58	-	-	-	60						
ASA	øil.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR				
150	1409,7	1435,1		1606,5	1460,5	1486	1536,7	1663,7	1511,3	1536,7	the second second	1714,5				
300	1	Sec. 2	1505	1543	1447,8	1511,3	1562	1593,9	1524	1562,1	1612,9	1644,6				
400		1454,2		1568,4	1454,1	1505	1555,7	1619,2	1517,6	1568,4	1619,2	1682,7	1			
600	1428,8	1479,6	1530,3	1612,9	1473,2	1536,7	1587,5	1663,7	1530,3	1593,8	1644,6	1733,5				
900		v	XX		XXX					1927	(X					

The dimensional data of GR and GRI types comply with ASME B16.20 standard and are applicable to ASME B16.47 B–series flanges

	1	26	7	-	2	28			10.	30			32"					
ASA	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR		
75	XXX	666,8	658,8	708,03	XXX	717,55	739,78	758,83	XXX	768,35	790,58	809,63	XXX	819,15	841,38	860,43		
150	10.00		698,5	725,5	704,9	723,9	749,3	776,29	755,65	1.0.0	800,1	827,09	806,45	825,5	850,9	881,06		
300	654,1	673,1	711,2	771,5			762	825,5		774,7	812,8	885,82	-		863,6	939,8		
400		666,8	698,5	746,15	701,7	714,38	749,3	800,1	752,47	765,18	797,15	857,25	800,1	812,8	860,43	911,23		
600	644,5	663,6	714,4	765,18	692,2	704,85	755,65	819,15		777,88	828,68	879,47	793,75	831,85	882,65	933,45		
900	673,1	692,2	749.3	838,2	723,9	742,95	800,1	901,7	787.4	806,4	857,25	958.85	838,2	863,6	914,4	1016		

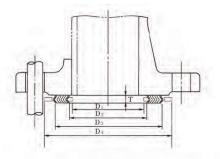
11		34	•	200	2	36	39.1		1	38	*	-		40	r	
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR
75	XXX	869,95	892,18	911,23	XXX	920,75	946,15	973,14		X	xx		1	X	κx	1.000
150	1	876,3	908,05	935,04	908,05	927,1	958,85	987,43	958,85	974,74	1009,7	1044,6	1009,7	1022,4	1063,6	1095,4
300	857,25		914,4	993,78		I mail	965,2	1047,8	971,55	1009,7	1047,8	1098,6	1022,3	1060,5	1098,6	1149,4
400	850,9	866,78	911,23	962,03	898,53	917,58	1.	1022,4	952,5	971,55	1022,4	1073,2	1000,1	1025,5	1076,3	1127,1
600	1000	889	939,8	996,95	901,7	939,8	990,6	1047,8	Acres 198	990,6	1041,4	1104,9	1009,7	1047,8	1098,6	1155,7
900	895,35	920,08	968,38	1073,2	927,1	946,15	996,65	1124	1009,7	1035,1	1085,9	1200,2	1060,5	1098,6	1149,4	1251

Land.		42			1	44	*			46	7	-		48	3"	
ASA	øi I.R.	øisw	øe SW	øeOR	øi I.R.	øiSW	øe SW	øeOR	øi I.R.	øi SW	øe SW	øe OR	øil.R.	øi SW	øe SW	øe OR
75	XXX	1073,2	1098,6	1125,5		X	XX		1	X	XX		XXX	1228,7	1257,3	1282,7
150	1060,4	1079,5	1114,4	1146,2	1111,2	1124	1165,2	1193,8	1162,1	1181,1	1224	1255,7	1212,9	1231,9	1270	1306,5
300	1054,1	1111,3	1149,4	1200,2	1124	1162,1	1200,2	1251	1177,9	1216	1254,1	1317,6	1231,9	1306,5	1311,3	1368,2
400	1050,9	1076,3	1127,1	1177,9	1104,9	1130,3	1181,1	1231,9	1168,4	1193,8	1244,6	1289,1	1206,5	1244,6	1295,4	1346,2
600	1066,8	1104,9	1155,7	1219,2	1111,2	1162,1	1212,9	1270	1162,1	1212,9	1263,7	1327,2	1219,2	1270	1320,8	1390,7
900	11111,2	1149,4	1200,2	1301,8	1155,7	1206,5	1257,3	1368,4	1219,2	1270	1320,8	1435,1	1270	1320,8	1371,6	1485,9

		.50	*		1	5	52"		1	54	4"		-	5	6"	
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øeOR	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øi SW	øe SW	øe OR
75	1	Х	XX	_		X	XX		XXX	1381,1	1412,9	1438,3		X	κx	
150	1263,7	1282,7	1325,6	1357,3	1314,5	1333,5	1376,4	1408,1	1360	1384,3	1422,4	1463,7	1422,4	1444,6	1478	1514,5
300	1266,8	1317,6	1355,7	1419,2	1317,6	1368,4	1406,5	1470			11.00	1530,4	1428,8	1479,6	1524	1593,9
400	1257,3	1295,4	1346,2	1403,4	1308,1	1346,2	1397	1454,2	1352,6	1403,4	1454,2	1517,7	1403,4	1454,2	1505	1568,5
600	1270	1320,8	1371,6	1447,8	1320,8	1371,6	1422,4	1498,6	1378	1428,8	1479,6	1555,8	1428,8	1479,6	1530,4	1612,9
900		1270 1320,8 1371,6 1447,8 1320,8 1371,6 1422,4 XXX X XXX								X	XX	1111111		X	κx	

		58	"	-		60		
ASA	øi I.R.	øi SW	øe SW	øe OR	øi I.R.	øiSW	øe SW	øe OR
75		X	xx		XXX	1536,7	1568,5	1597
150	1478	1500,2	1528,8	1579,6	1535,1	1557,3	1585,9	1630,4
300	1484,3	1535,1	1573,2	1655,8	1557,3	1585,9	1630,4	1706,6
400	1454,2	1504,9	1555,8	1619,3	1517,7	1568,5	1619,3	1682,8
600	1473,2	1536,7	1587,5	1663,7	1530,4	1593,9	1644,7	1733,6
900		X	κx			X	XX	

The dimensional data of GR type complies with JIS B 2404–2006 standard and is applicable to JIS B 2220–2004/JIS B 2239–1996 F series flanges



Nominal	Nomin	al pressure	10K	1	16, 20K			30K		1	40K		1	63K		Thicknes
diameter of flange	Inner ring D2 ID	Outer ring D3 OD	Outer ring OD D4	Inner ring D2 ID	Outer ring D3 OD	Outer ring OD D4	Inner ring D2 ID	Outer ring D3 OD	Outer ring OD D4	Inner ring D2 ID	Outer ring D3 OD	Outer ring OD D4	Inner ring D2 ID	Outer ring D3 OD	Outer ring OD D4	Thioteroo
10A	24	37	52	24	37	52	24	37	59	21	34	59	21	34	64	
15A	28	41	57	28	41	57	28	41	64	24	37	64	24	37	69	
20A	34	47	62	34	47	62	34	47	69	29	42	69	29	42	75	1
25A	40	53	74	40	53	74	40	53	79	35	48	79	35	48	80	
32A	51	67	84	51	67	84	51	67	89	44	60	89	44	60	90	1
40A	57	73	89	57	73	89	57	73	100	51	67	100	51	67	107	
50A	69	89	104	69	89	104	69	89	114	63	79	114	63	79	125	
65A	87	107	124	87	107	124	78	98	140	78	98	140	78	98	152	
80A	98	118	134	99	119	140	90	110	150	90	110	150	90	110	162	
90A	110	130	144	114	139	150	102	127	162	102	127	162	102	127	179	
100A	123	143	159	127	152	165	116	141	172	116	141	182	116	141	194	
125A	148	173	190	152	177	202	140	165	207	140	165	224	140	165	235	4.5
150A	174	199	220	182	214	237	165	197	249	165	197	265	165	197	275	4.5
175A	201	226	245						1	10.0-00		100	10-34	10.441		i prime.
200A	227	252	270	233	265	282	218	250	294	218	250	315	218	250	328	1
225A	252	277	290			10	-				1000				(-	
250A	278	310	332	288	328	354	271	311	360	271	311	378	271	311	394	
300A	329	361	377	339	379	404	320	360	418	320	360	434	320	360	446	
350A	366	406	422	376	416	450	356	396	463	356	396	479	356	396	488	
400A	417	457	484	432	482	508	403	453	524	403	453	531	403	453	545	
450A	468	518	539	483	533	573		1	-	-		-0.1	- 1	-	1	
500A	518	568	594	533	583	628		-	1 200		10-11	-		-		6
550A	569	619	650	584	634	684	1	l	12-11	-	j	THE !!	-		-	
600A	620	670	700	635	685	734	-	-	1.000							1.1

The dimensional data of GRI type complies with JIS B 2404–2006 standard and is applicable to JIS B 2220–2004/JIS B 2239–1996 flanges

Nominal	N	lominal pr	essure 1	ок		16,	20K			3	ок			4	OK			6	зк	-	Thic
diameter of flange	Inner ring D1 ID	ID D2	OD D3	Outer ring D4	Inner ring ID D1	ID D2	OD D3	Outer ring D4 OD	Inner ring D1 ID	ID D2	OD D3	Outer ring D4 OD D4	Inner ring D1 ID	ID D2	OD D3	Outer ring D4 OD D4	Inner ring D1 ID	ID D2	OD D3	Outer ring D4 OD	τ
10A	18	24	37	52	18	24	37	52	18	24	37	59	15	21	34	59	15	21	34	64	
15	22	28	41	57	22	28	41	57	22	28	41	64	18	24	37	64	18	24	37	69	-
20	28	34	47	62	28	34	47	62	28	34	47	69	23	29	42	69	23	29	42	75	<u></u>
25	34	40	53	74	34	40	53	74	34	40	53	79	29	35	48	79	29	35	48	80	
32	43	51	67	84	43	51	67	84	43	51	67	89	38	44	60	89	38	44	60	90	Č.
40	49	57	73	89	49	57	73	89	49	57	73	100	43	51	67	100	43	51	67	107	
50	61	69	89	104	61	69	89	104	61	69	89	114	55	63	79	114	55	63	79	125	
65	77	87	107	124	77	87	107	124	68	78	98	140	68	78	98	140	68	78	98	152	
80	88	98	118	134	89	99	119	140	80	90	110	150	80	90	110	150	80	90	110	162	
90	98	110	130	144	102	114	139	150	92	102	127	162	92	102	127	162	92	102	127	179	
100	111	123	143	159	115	127	152	165	104	116	141	172	104	116	141	182	104	116	141	194	4.5
125	136	148	173	190	140	152	177	202	128	140	165	207	128	140	165	224	128	140	165	235	4.0
150	158	174	199	220	166	182	214	237	153	165	197	249	153	165	197	265	153	165	197	275	
200	211	227	252	270	217	233	265	282	202	218	250	294	202	218	250	315	202	218	250	328	
250	258	278	310	332	268	288	328	354	251	271	311	360	251	271	311	378	251	271	311	394	
300	309	329	361	377	319	339	379	404	300	320	360	418	300	320	360	434	300	320	360	446	
350	346	366	406	422	356	376	416	450	336	356	396	463	336	356	396	479	336	356	396	488	
400	392	417	457	484	407	432	482	508	383	403	453	524	383	403	453	531	383	403	453	545	
450	443	468	518	539	458	483	533	573		j	1	-	1			1	-	1-3	-	1	
500	493	518	568	594	508	533	583	628	Ļ	1	- 1	1	1	E.	1	1	-	Ĩ.	1.000	1	
550	544	569	619	650	559	584	634	684	1		1	1	+	N.	X					1-1	
600	595	620	670	700	610	635	685	734	-	-	-	-						1 200	1.000		

Nominal	No	minal pres	ssure 10K			1	БК		10.00	2	ок	
diameter of flange	Inner ring D1 ID	ID D2	OD D3	Outer ring D4 OD	Inner ring D1 ID	ID D2	OD D3	Outer ring D4 OD	Inner ring D1 ID	ID D2	OD D3	Outer ring DA
650A	650	675	725	750	674	699	749	784	695	720	770	805
700	701	726	776	810	716	741	791	836	740	765	815	855
750	752	777	827	870	777	802	852	896	799	824	874	918
800	803	828	878	920	831	856	905	945	865	881	931	978
850	854	879	929	970	880	905	955	995	919	944	994	1,038
900	904	929	979	1,020	934	959	1,009	1,045	971	996	1,046	1,088
1,000	1,006	1,036	1,086	1,124	1,030	1,060	1,110	1,158		-	-	-
1,100	1,108	1,138	1,188	1,234	1,132	1,162	1,212	1,258		- 1	1-1	-
1,200	1,209	1,239	1,289	1,344	1,240	1,270	1,320	1,368	-	-	-	1
1,300					1,341	1,371	1,421	1,474	1000		1	1.000
1,350	1,362	1,392	1,442	1,498	1,403	1,433	1,483	1,534	1000		-	11000
1,400	1.20	-	-	1.4.3	1,453	1,483	1,533	1,584		~	-	
1,500	1,514	1,544	1,594	1,658	1,559	1,589	1,639	1,694	-	-	-	-

Unit (mm)

The dimensions in the two tables are not applicable to small flat seats.

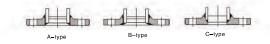
The dimensions in the bold table are applicable to both large and small flat seats. (However, please note that these dimensions are only applicable to butt welded flanges and C-type sliding sleeve welded flanges specified in JIS B2220.)

Suitable for A-type sliding sleeve welding flange and B-type sliding sleeve welding flange with a nominal pressure of 30 K

When the nominal pressure is 63K, it is recommended to use gaskets with inner and outer rings on the flange.

It is recommended to equip with inner and outer rings

When the nominal pressure is 2K and 5K, it is recommended not to use gaskets on the flange. It is recommended to use high-strength alloy steel bolts with SNB-7 or higher.


Suitable for A-type sliding sleeve welding flange (socket welding type)

Nominal	1.1	30	ĸ	
of flange	Inner ring ID D1	ID D2	OD D3	Outer ring OD D4
10A	21	29	42	59
15	25	32	45	64
20	30.5	37	.50	69
25	37.5	47	60	79
32	46	54	70	89
40	52	64	80	100
50	64	75	95	114
65	80	100	120	140
80	93	110	130	150
90	105.5	120	140	163
100	118.5	130	150	173
125	146	160	185	208
150	171.5	190	220	251
200	223	235	265	296
250	274	290	330	360
300	326	350	390	420
350	363	395	435	465
400	414	445	495	524

Suitable for B-type sliding sleeve welding flange (socket welding type)

Nominal		20	к	_		30	ĸ	
diameter of flange	Inner ring ID D1	ID D2	OD D3	Outer ring OD D4	Inner ring ID D1	ID D2	OD D3	Outer ring OD D4
10	23	29	39	52	30	36	45	59
15	27	33	43	57	36	42	52	64
20	33	39	49	62	40	46	56	69
25	38	46	59	74	46	54	67	79
32	47	55	68	84	54	62	75	89
40	53	61	74	89	60	68	81	100
50	64	74	90	104	70	80	95	114

Sliding sleeve welding flange (socket welding flange)

If it is a sleeve flange, the pipe needs to be inserted into the flange and then welded to the top and inner diameter of the flange. The JIS 20K and 30K flanges consist of A-type, B-type, and C-type flanges as shown in the above diagram. (The figure shows a neck flange.)

Metal wound gaskets with special applications

FLEXWOUND BS low stress metal wound gasket

BS type and BSI type gaskets are specifically designed for applications that require low bolt torque. Traditional metal wound gaskets have steel windings protruding above the compression stop. The filling material of BS type and BSI type gaskets protrudes above the metal winding and guide ring. Compared with traditional metal gaskets, this change can achieve perfect sealing at lower load stresses.

FLEXWOUND [®] HT high-temperature resistant spiral wound gasket

HT gaskets are specifically designed for extreme temperatures and situations with strong oxidizing properties. This structure includes a special HT chromium nickel iron alloy X750 material winding and guide ring, combined with Flexigraf Filler – protects the inner and outer diameters through high-temperature resistant and antioxidant Micatherm fillers.

27

FLEXWOUND® NOSE-RI

Metal wound gaskets for cold and heat exchangers

FLEXWOUND CARRIER GASKETS can use multiple levels of gaskets to configure spiral wound sealing elements for mechanical processing of Carring gasket cross-sections (assembled through Carring gaskets) NOSE-RI type metal wound gaskets, with metal wound outer rings, mainly designed for Tema male and female flanges, and customized according to the design conditions of individual cold and heat exchangers. These gasket pieces have multiple materials to choose from. The outer nose is used to ensure the correct position of the metal wrapped sealing element (protected by the inner ring), and can also be used as a compression stop device. NOSE-R1 gasket can also be used in conjunction with hard metal or metal coated rolled bars.

The CARRIER type gasket is composed of hard steel rings, and grooves are organically machined on each surface where the spiral wound gasket is located. This forms a gasket with higher resilience, ensuring that the bolt torque remains unchanged even in the event of hard pressure and temperature cycling. The typical applications of this type of gasket are in the power generation, petrochemical, and nuclear industries. Carrier gaskets can be used for flat, raised or mortise and tenon flanges, as well as non-standard flange configurations. They can be used for small and large diameter holes, with a rated pressure rating of up to 2500 levels. Carrier gaskets can also be customized according to specific flange devices and design conditions.

Can be configured with multiple levels of gaskets

Can be configured with multiple levels of gaskets A gasket can be applied to both Class 150 and Class 300 flanges simultaneously. The gasket functions that can be used at multiple levels are as follows: A gasket can accommodate both Class 150 and Class 300 flanges, with a design diameter of 1/2 "-24" (NPS1/2 to NPS3 standards range from Class 150 to Class 600). Reduce inventory demand. Easy to install: Simply remove less than half of the bolts and replace the washers.

Cross section of machined Carring gasket for helically wound sealing elements (assembled with Carring gasket)

Flexcamm[®] Cammprofile Shim

describe

Flexcamm ® Toothed gaskets are considered a new type of high-quality sealing product. When the sealing environment is difficult and the gasket performance is particularly important under low pre tightening stress, such gaskets can be used to solve problems. Flexcamm ® The gasket is equipped with a sealing layer (made of flexible graphite Flexigraf) * Metal core made of expanded mica (with concentric grooves), traditional polytetrafluoroethylene or bi-directional polytetrafluoroethylene Sichem ® Composition. Metal cores are usually selected based on the smelting method of the pipeline. Flexcamm ® Made with different materials and non circular shapes, it has extremely high accuracy. They can also be customized to adapt to various applications.

FN type

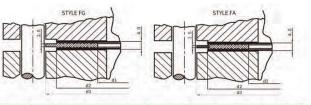
There are no guide rings used for tenon and groove flange applications during manufacturing, or groove flange applications - such as male and female and groove. It is usually suitable for heat exchanger applications and is used as an upgraded version of the double jacket gasket.

FG type

Equipped with integral guide ring for alignment. Recommended for raised face flanges. The design and dimensions of gaskets usually comply with EN 12560-6 specifications and are suitable for ASME B16.5 flanges, but can be manufactured according to other standards.

FA type

Equipped with floating guide rings. It is recommended to use this solution in applications with excessive radial shear characteristics, thermal cycling, and expansion. The design and dimensions of gaskets usually comply with EN 12560-6 specifications and are suitable for ASME B16.5 flanges, but can be manufactured according to other standards.


SRG gasket (reinforced graphite cover gasket)

SRG gasket is a solid gasket made of a rigid metal core, with two layers of expanded graphite on each layer of metal mesh. The sturdy metal core provides protection against bursting, while the soft graphite layer provides good sealing - as it can adapt well to the flange surface even under low gasket preload stress. It can widely use various core materials, from carbon steel to special alloys. SRG gaskets are suitable for low-pressure heat exchangers in chemical and petrochemical factories, with narrow pad widths and non circular shapes.

Dimensional data applicable to EN 12560–6 raised face flanges with DN ranging from 10 to 1400mm

Dimer	nsion mm		10	16	25	40	64	100	160	250	320	400
DN	d1	d2	d3	d3	d3	d3	d3	d3	d3	d3	d3	d3
10	22	36	46	46	46	46	56	56	56	67	67	67
15	26	42	51	51	51	51	61	61	61	72	72	78
20	31	47	61	61	61	61						-
25	36	52	71	71	71	71	82	82	82	82	92	104
32	46	66	82	82	82	82		100	-			
40	53	73	92	92	92	92	103	103	103	109	119	135
50	65	87	107	107	107	107	113	119	119	124	134	150
65	81	103	127	127	127	127	137	143	143	153	170	192
80	95	121	142	142	142	142	148	154	154	170	190	207
100	118	144	162	162	168	168	174	180	180	202	229	256
125	142	176	192	192	194	194	210	217	217	242	274	301
150	170	204	217	217	224	224	247	257	257	284	311	348
175	195	229	247	247	254	265	277	287	284	316	358	402
200	224	258	272	272	284	290	309	324	324	358	398	442
250	275	315	327	328	340	352	364	391	388	442	488	-
300	325	365	377	383	400	417	424	458	458	536		1.5
350	375	420	437	443	457	474	486	512	-			1.00
400	426	474	489	495	514	546	543	572	-	-	-	1.0
450	480	528	539	555	-	571	1.00		14	20	1.0	
500	530	578	594	617	624	628	657	704			1	-
600	630	680	695	734	731	747	764	813	~	-	-	
700	730	780	810	804	833	852	879	950	- 1		-	1.0
800	830	880	917	911	942	974	988	-	-		1.16	-
900	930	980	1017	1011	1042	1084	1108	-				1.1.4
1000	1040	1090	1124	1128	1154	1194	1220	-	-	-	-	-
1200	1250	1310	1341	1342	1364	1398	1452	-	(4)	2	1	10
1400	1440	1510	1548	1542	1578	1618		-	1.4		14	-

Dimensional data applicable to EN 12560–6 raised face flanges with DN ranging from 10 to 1400mm

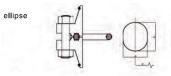
Dimensior	n mm	-	150	300	400	600	900	1500	2500
DN	dl	d2	d3	d3	d3	d3	d3	d3	d3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23,0 28,6 36,5 44,4 55,4 69,8 82,5 98,4 11,1 23,8 50,8 77,8 82,6 339,7 771,5 82,6 82,6 339,7 771,5 82,6 82,6 339,7 771,5 82,6 82,6 82,7 77,8 82,6 82,7 83,6 82,7 83,6 82,6 83,7 77,8 82,6 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 82,6 83,7 77,8 83,7 70,8 83,7 71,5 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 83,7 70,8 70,8 83,7 70,8 70,9 70,4 30,2 81,0 31,8 81,0 70,0	33,3 39,7 47,6 60,3 69,8 88,9 101,6 88,9 123,8 136,5 154,0 154,0 212,7 266,7 320,7 377,8 409,6 406,7 530,2 581,0 631,8	44,4 53,9 63,5 73,0 82,5 120,6 120,6 133,4 158,8 171,5 193,7 219,1 276,2 336,5 406,4 447,7 511,2 546,1 603,2 657,2 714,4	50.8 63.5 69.8 79.4 92.1 108.0 127.0 146.1 161.9 177.8 212.7 247.7 304.8 358.8 419.1 482.6 536.6 533.7 650.9 701.7 771.5	50.8 63.5 69.8 79.4 92,1 108.0 127,0 146,1 158,7 174,6 209,5 244,5 355,6 415,9 479,4 533,4 590,5 644,5 698,5 765,2	50.8 63.5 69.3 79,4 92,1 108,0 127,0 146,1 158,7 190,5 238,1 263,5 317,5 396,9 454,0 488,9 561,9 609,6 679,5 730,3 787,4	60.3 66.7 76.2 85.7 161.9 165.1 - 203.2 244,5 285,8 355,6 431,8 495,3 517,5 571,5 635,0 695,3 - 695,3 - 835,0	60,3 6,7 76,2 95,2 95,2 139,7 161,9 171,5 706,4 250,8 279,4 349,3 431,8 517,5 574,7 638,1 701,7 752,4 -	66,7 73,0 82,5 101,6 114,3 142,8 165,1 193,7 231,7 231,7 276,2 314,3 384,1 473,0 546,1
Dimension		002,0	150		300	400	600	1000 C	900
	d1	d2	d3		¢3	d3	d3		d3
28 30 8 30 8 32 8 34 8 36 9 38 9 40 1 44 1 44 1 44 1 50 1 52 1 52 1 58 1 58 1	690 740 800 845 950 950 960 1015 1065 1175 1220 1270 1320 1375 1430 1485 1535	740 790 850 905 905 1010 1020 1075 1125 1185 1235 1290 1350 1400 1455 1510 1565 1615	772 829 880 937 987 1045 1108 1159 1216 1273 1324 1381 1432 1489 1546 1603 1661 1711		832 895 949 1003 1054 1114 1051 1111 1162 1216 12170 1321 1342 1344 1340 1341 1340 1341 1340 13	829 889 943 1050 1051 1070 1070 1174 1174 1174 1175 1229 1286 1343 1400 1451 1515 1565 1616 1680	864 911 968 1077 1127 1100 1267 1324 1388 1444 1499 1555 1610 1660 1733	9	880 943 1007 1070 1134 1197 1248 1299 1365 1452 1452 1453 - -

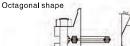
The RTJ metal ring gasket is made of different types of hard metal. They are suitable for high pressure (up to 1300 bar) and high temperature (up to 1000 ° C) situations, and are suitable for corrosive locations. These gaskets are obtained from metal through forging or laminated mechanical processing. RTJ metal rings are mainly used in refining processes and high-pressure situations in refining processes. For production, we use the latest version of API standards. We can provide elliptical and octagonal ring joints, BX and RX, for all applications to match standard and special flange designs.

Ring connection gasket R-octagonal and R-elliptical

R-shaped gasket

The ring connecting gasket was originally developed for high-pressure/high-temperature applications in the petroleum industry, mainly used for drilling and completion equipment in oil fields. However, nowadays, this series of products can also be found on valve and pipeline assembly components, as well as at the connections of some high integrity pressure vessels.


There are two basic types of API ring connection gaskets, one is circular cross-section and the other is octagonal cross-section. These basic types can be used for pressures up to 10000 psi, Their dimensions are standardized and only applicable to special slotted flanges. The sealing efficiency of octagonal section is higher than that of circular section, making it the preferred type of gasket. However, in old-fashioned circular bottom grooves, only circular cross-section types can be used. Newer flat bottomed groove designs can use circular or octagonal cross-sections. The sealing surface on the ring connection groove must be flat and needs to be trimmed to 63 micro inches, and there must be no obstructive protrusions, tool marks, or vibration marks. When pressure is applied, they seal through initial line contact or edge action.


The hardness of the ring should always be lower than that of the flange to prevent flange deformation. Please refer to ASME B16.20 and API6A for the dimensions of the API ring connection gasket and groove.

Apex has product inventory of various sizes and materials, from R11 to R105, which can be shipped immediately.

Pressure: 2000-5000 PS

Dimensional Data - R-Type

Tolerance: (mm)

A (ring width) \pm 0.20 B, H (ring height) \pm 0.5 P (ring diameter) \pm 0.18 23. (Chamfer) \pm 1/2 $^{\circ}$

The R-ring connecting gasket can be manufactured according to all relevant standards to adapt to the following flange designs.

API6A ASME/ANSI B16.5 MSS SP44 (ASME B16.47 A系列) BS 1560

						Pressure							Middle	Ding		ng height		Gaske	et weight, I
ng o.			BS 16.5			API	6B		ASM	E B16.4	7 A Serie		diameter of ring	Ring width	Oval	Octagon	Approximate distance from the flange	Gaske	st weight, i
	150	300/ 600	900	1500	2500		2000	3000	5000	150	300/ 600	900			ovu	g		Oval	Octago
		- 1-			No	minal pipe	size (inch)					Р	A	В	н			
12	-	1/2	1/2	1/2	-	-	-	-	-	-	-	1	34.13 39.69	7.95 7.95	11.1 14.3	9.5 12.7		.111	.104
13		3/4	4/2		1/2	-	-	-	-			-	42.86	7.95	14.3	12.7	-	.234	.200
14	-		3/4	3/4	-	-	-		+	-	-		44.45	7.95	14.3	12.7		.242	.224
15	1	-	2	13	-	5	1	1.5	-				47.63	7.95	14.3	12.7		.260	.240
16	1.14	1	1	1	3/4	1	1.14	1	1	-	-	.+	50.80 57.15	7.95	14.3 14.3	12.7 12.7		.278	.256
18	1 1/4	11/4	11/4	11/4		1 1/4	11/4	11/4	11/4			-	60.33	7.95 7.95	14.3	12.7		.328	.288
19	11/2		-	-	-	-	11/2	-	-				65.09	7.95	14.3	12.7	-	.354	.328
20	-	1 1/2	1 1/2	1 1/2		1 1/2	-	1 1/2	11/2	-		4	68.28	11.11	14.3	12.7	4.1	.372	.344
21		-	-	-	1 1/4	-	-	-	•	-			72.23 82.55	7.95	17.5	15.9 12.7	-	.380	.643
22	2	2	-	-	1 1/2	2	2	-	-	-		-	82.55	11.11 11.11	14.3 17.5	15.9	4.8	.450	.415
24		-	2	2	-			2	2		-		95.25	7.95	17.5	15.9	4.8	.870	.846
25	2 1/2	-	-	-	-	-	21/2	-	-	*			101.60	11.11	14.3	12.7	-	.553	.510
26		2 1/2		-	2	2 1/2		-	-	-			101.60	11.11	17.5	15.9	4.8	.930	.904
27 28			2 1/2	2 1/2	2 1/2	-		2 1/2	2 1/2		-	(4)	107.95 111.13	12.70 7.95	17.5 19.1	15.9 17.5	-	1.050 1.255	.960
10	3	-			2 1/2		-	-	-	-			114.30	11.11	14.3	12.5		.822	.575
30	-	3	-	-	-	-	3			-	-	+	117.48	11.11	17.5	15.9	-	1.075	1.04
81	1	3	3	-	4	3	-	3	*	-	-	-	123.83	12.70	17.5	15.9	4.8	1.130	1.10
32	210	-	4	-	3	-	-			-	1	-	127.00	7.95	19.1	17.5	-	1.435	1.10
33 34	31/2	3 1/2			-	-	-		-	-	-	-	131.76 131.76	11.11 11.11	14.3 17.5	12.7 15.9	1	.718 1.200	.654
35	-			3	-	2	-	-	3	-	-	-	136.53	7.95	17.5	15.9	4.8	1.200	1.1
86	4	-		-	-	-	4		+	-			149.23	11.11	14.3	12.7		.813	.73
37	-	4	4	-	-	4		4	3 1/2	-		+	149.23	15.88	17.5	15.9	4.8	1.360	1.33
88 89			30	2	4		2	1	-	-	-		150.86 161.93	11.11	22.4	20.6	4.8	2.56 1.480	2.5
59 10	5		-	4	-	-	5	-	4	-	1.4	-	161.93	7.95	17.5 14.3	15.9	4.8	.835	1.44
11	2	5	5	-	-	5	-	5				2	180.98	19.05	17.5	15.9	4.8	1.66	1.06
12	-		-		5	-	-	-	-	-			190.50	7.95	25.4	23.9	-	4.21	4.76
13	б				-	-			4	-			193.68	11.11	14.3	12.7	-	1.055	.975
14		-	-	5	-	-	6	-	5	-	1.4	-	193.68	11.11	17.5	15.9	4.8	1.77	1.7.
15 16		6	6	6	-	6	-	6	6		1.00		211.14 211.14	12.70 19.05	17.5 19.1	15.9 17.5	4.8 4.8	1.93 2.39	1.80
17	-			-	6	-	-	-	0	-		-	226.60	7.95	25.4	23.9	4.1	5.06	4.99
18	8		-	-	2	-	8	-	-	-	-	-	247.55	11.11	14.3	12.7	-	1.350	1.24
19	1	8	8	-	-	8	-	8	+			-	269.88	15.88	17.5	15.9	4.8	2.47	2.40
50			-	8	-	-	-	-	8				269.88	22.23	22.4	20.6	4.1	4.40	4.32
51 52	10			-	8	-	10	-					279.40 304.80	7.95 11.11	28.6 14.3	27 12.7		8.05 1.66	8.17
3	- 10	10	10	-		10	10	10	-				323.85	15.88	14.5	15.9	4.8	3.00	2.88
4	-	-		10	-	-		-	10	-			323.85	28.58	22.4	20.6	4.1	5.29	5.1
55	3	-			10	÷.	-		~		-	.e.,	342.90	7.95	36.5	34.9		16.23	17.0
56	12	-	-		۰.	-	12				-		381.00	11.11	14.3	12.7	-	2.07	1.92
57 58	-	12	12	12	-	12	-	12	*	-		-	381.00 381.00	22.23 7.95	17.5 28.6	15.9 27.0	4,8	3.48 11.00	3.38
59	14	-	-	-		-	-						396.88	31.75	14.3	12.7		2.16	2.00
50	2	1.00		-	12	-	14	+		-	141		406.40	11.11	39.7	38.1	-	23.10	23.5
51		14		4		14		14	4			-	419.10	15.88	17.5	15.9		3.83	3.73
52	-	-	14	-	-	-	1	-	+	-	-	-	419.10	25.40	22.2	20.6	i.	6.84	6.7
i3 i4	16	-	-	14	3	-	16	-	*	-	-	-	419.10 454.03	7.95 11.11	33.3 14.3	31.8 12.7	5.6	16.2	16.6
55	-	16	-		-	16	-				-	-	469.90	15.88	14.5	15.9	4.8	2.47 4.30	4.1
56	-	-	16	-	-	-		16	-	-			469.90	28.58	22.2	20.6	4.1	7.67	7.53
57	-	-	-	16	1	-	-				-	*	469.90	7.95	36.5	34.9	-	22.3	23.4
8	18	10		-	-	10	18	*	-	-	-		517.53	11.11	14.3	12.7	4.0	2.82	2.6
59 70		18	18	-	-	18	-	18	-	-	-	-	533.40 533.40	19.05 28.58	17.5 25.4	15.9 23.9	4.8 4.8	4.87 11.80	4.74
1	-	-	-	18		-	-	-	-	-		-	533.40	7.95	36.5	34.9	-	25.20	26.5
2	20		-	-	-	-	20			-		*	558.80	12.70	14.3	12.7		3.04	2.8
13	-	20	-	-	-	20	-		-	-	-	-	584.20	19.05	19.1	17.5	3.3	6.60	6.47
14	-	-	20	-	-	-	-	20	-	-	-	-	584.20 584.20	31.75	25.4 39.7	23.9 38.1	4.8	12.95	12.7
75 76	24			20	-	-	-		-		-		584.20 673.10	7.95 15.88	39.7 14.3	38.1	-	33.30 3.66	35.3
17	-	24	-	-	-	-	-	-		-			692.15	25.40	22.4	20.6	-	11.30	11.
8			24	-	-	-	-	-		-		+	692.15	34.93	33.3	31.8		27.10	27.5
9	-			24	-	-			÷ .	-			692.15	7.95	44.5	41.3	3.	48.70	49.7
0			-	-	-	-	-	-	-	-			615.95 635.00	14.29	1	12.7	-		3.1
31 32		-	-	-	-	-	-		1	-	-	-	635.00 57.14	11.11 11.11	-	19.1 15.9	4.8	-	8.55
34	-	-	-	-	-	-	-		1 1/2	-	-	-	63.50	12.70	-	15.9	4.8		0.56
35	-	1		-	-	-	5	*	2	-			79.38	15.88		17.5	3.3	-	0.97
36	-	-		-		-	-	*	21/2			+	90.50	15.88		20.6	4.1	~	1.44
37		-	-	4	-	-			3	-			100.03	19.05		20.6	4.1	-	1.59
38 39	-	-			-	-	-		4 31/2	-		-	122.83	19.05 22.23		23.9 23.9	4.8 4.8		2.73
90	-		-			-	-		5 5		-	-	114.30 155.58	31.75		23.9	4.8	-	2.52
91	-	-		-	-	-	-	-	10	-	-	-	260.25	11.11	-	38.1	4.1	+	15.0
12		-	-	-	-					-		+	228.60	19.05	17.5	15.9	-	2.07	2.02
3			-	-	-	-	-	-	-	-	26		749.30	19.05		23.9			16.3
94				-	-	-			-	-	28		800.10	19.05	-	23.9	-		17.4

PLANI CHEM SICHEM SOLUTIONS Ring height Pressure ratings Middle Ring Gasket weight, Iln ANSI. BS 16.5 API 6B ASME B16.47 A Series Approximate listance from the flange diameter of ring width Octagon 720-960 2000 3000 5000 150 300/ (1) Oval 300/ 900 1500 2500 900 Oval Octagor Nominal pipe size (inch) 914.40 22.23 27.0 26.65 27.0 27.0 15.9 34.9 34 965.20 22.23 28.13 1022.35 22.23 29.79 11.11 28.58 31.75 234.95 749.30 4.8 2.08 26 38.1 800.10 28 30 857.25 31.75 38.1 38.1 41.3 41.3 32 914.40 31.75 34 965.20 34.93

Metal ring gasket BX type

BX type gasket

Ring No.

R96

R97 R98 R99 R100

R101

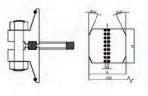
R102

R103

R104

R105

150


The BX type RTJ metal ring gasket complies with API 6A and ASME B16.20 manufacturing standards to accommodate API 6B and ASME/ANSI B16.5 flanges.

The BX type is a turbocharged improved version of the standard R-type gasket. The design of the BX type groove is the same as that of the standard R type groove, making the joint interchangeable. The improved design adopts a pressure excitation effect, which improves the sealing efficiency as the internal pressure of the system increases.

Pressure: 5000-20000 PSI

Dimensional Data – BX Type

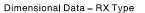
34.93

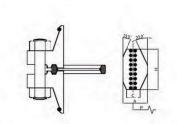
Tolerance: (mm)

1022.35

*A * (ring width)+0.20, -0.000 A * (hole size) \pm 0.5 * H * (ring height)+0.20, -0.000 OD (ring outer diameter)+0.000, -0.150 23 * (chamfer) ± 1/4 ° Note 1: The radius of the ring should be 8% to 12% of the ring height "H".Each ring requires a pressure channel hole on the centerline, with a size of * A plus a tolerance of 0.008 inches, to cover the width tolerance * A * and height tolerance * H *, provided that the variation in width or height does not exceed 0.004 inches on the entire circumference.

		Pressu	ire ratings API	BB							
Ring No.							Ring OD	Ring width H	Ring height	Hole size	Gasket weight, ibs suitable for APL 66
140.	2000	3000	5000	10000	15000	20000	0D	п	A	U	flange
BX150				1 11/6	1 11/6		72.19	9.30	9.30	1.59	0.295
BX151	-	-		1 13/16	1 13/16	1 13/16	76.40	9.63	9.63	1.59	0.337
BX152				2 1/16	2 1/16	2 1/16	84.68	10.24	10.24	1.59	0.425
BX153		-		29/16	29/16	2 9/16	100.94	11.38	11.38	1.59	0.632
BX154	-			3 1/16	3 1/16	3 1/16	115.84	12.40	12.40	1.59*	0.875
BX155	-	-	-	4 1/16	4 1/16	4 1/16	147.96	14.22	14.22	1.59	1.22
BX156				7 1/16	7 1/16	7 1/16	237.92	18.62	18.62	3.18	4.14
BX157	-	-	-	9	9	9	294.46	20.98	20.98	3.18	6.55
BX158	-			ri	11	11	352.04	23.14	23.14	3.18	9.60
BX159	-	-	-	13 5/8	13 5/8	13 5/8	426.72	25.70	25.70	3.18	14.41
BX160	-	-	13 5/8	-	-	-	402.59	23.83	13.74	3.18	6.75
BX161			163/4	14		-	491.41	28.07	16.21	3.18	-
BX162	-	-	16 3/4	163/4	163/4	-	475.49	14.22	14.22	1.59	
BX163	-		18 3/4	+	-		556.16	30.10	17.37	3.18	
BX164	-	-	-	183/4	18 3/4		570.56	30.10	24.59	3.18	
BX165	*		21 1/4	-	-		624.71	32.03	18.49	3.18	-
BX166	-		+	211/4	-		640.03	32.03	26.14	3.18	
BX167	263/4	-		-	-	-	759.36	35.87	13.11	1.59	-
BX168	-	263/4		-	-		765.25	35.87	16.05	1.59	-
BX169	-	-	*	51/8	-		173.51	15.87	12.93	1.59	
BX170		-		65/8	6 5/8		218.03	14.22	14.22	1.59	-
BX171	-	-		8 9/16	8 9/16		267.44	14.22	14.22	1.59	-
BX172	-	-		115/32	11 5/32	-	333.07	14.22	14.22	1.59	
BX303	30	30	+	+	-		852.75	37.95	16.97	1.59	-

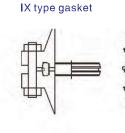

Metal ring gasket RX type



RX type gasket

The RX type RTJ gasket complies with API 6A and ASME B16.20 manufacturing standards and is suitable for API6B and ASME/ANSI B16.5 flanges.

The RX type is a turbocharged improved version of the standard R-type gasket. The design of the RX type groove is the same as that of the standard R type groove, making the joint interchangeable. The improved design adopts a pressure excitation effect, which improves the sealing efficiency as the internal pressure of the system increases.


Tolerance: (mm)

A * (ring width) nbsp+ 0.20, -0.000 H * (ring height)+ 0.20, -0.000 (outer diameter of ring)+0.5, -0.000 23 * (angle) $\pm\,$ 1/2 $^\circ$

	Pressu	ire ratings API 6B							
Ring No.	720-960 & 2000	2900 [Note 1]	3000	5000	Ring MD P	Ring OD	Ring width A	Ring height H	Weight
	[Note 1]	2900 [Note 1]	3000	5000					(00)
RX20	11/2		11/2	11/2	68.26	76.20	8.73	19.05	0.527
RX23	2	-		-	82.55	93.27	11.91	25.40	1.15
RX24	-		2	2	95.25	105.97	11.91	25.40	1.33
RX25		-	2	31/8	101.60	109.54	8.73	19.05	1.42
RX26	21/2	4			101.60	111.92	11.91	25.40	1.50
RX27			21/2	21/2	107.95	118.27	11.91	25.40	1.73
RX31	3		3		123.83	134.54	11.91	25,40	1.91
RX35			-	3	136.53	147.24	11.91	25.40	2.09
RX37	4		4	-	149.23	159.94	11.91	25.40	2.27
RX39	4		4	4	161.93	172.64	11.91	25.40	2.54
RX41	5		5	"	180.98	191.69	11.91	25.40	2.34
RX44	5	-	-	5	193.68	204.39	11.91	25.40	2.12
RX45	6		6	0	211.14	281.85	11.91	25.40	3.66
RX45			0	6	211.14 211.14	222.25	13.49	28.58	8.56
RX46 RX47	*		-	8*	228.60	245.27	13.49	41.28	8.56 3.79
	-						19.84	25.40	
RX49	8	-	8	-	269.88	280.59			5.36
RX50		7	-	8	269.88	283.37	16.67	31.75	4.56
RX53	10	9	10		323.85	334.57	11.91	25.40	6.45
RX54	7			10	323.85	337.34	16.67	31.75	5.36
RX57	12		12	*	381.00	391.72	11.91	25.40	26.40
RX63				14	419.10	441.72	26.99	50.80	6.63
RX65	16		-		469.90	480.62	11.91	25.40	9.39
RX66	~	-	16	-	469.90	483.39	16.67	31.75	7.52
RX69	18	-	-		533.40	544.12	11.91	25.40	20.14
RX70		e .	18		533.40	550.07	26.99	41.28	11.63
RX73	20		-	.e.	584.20	596.11	11.91	31.75	22.10
RX74	-	1 A	20		584.20	600.87	19.84	41.28	0.790
RX82		1	-		57.15	67.87	11.91	25.40	0.880
RX84		11/2	-	-	63.50	74.22	11.91	25.40	0.880
RX85	-	2	-	-	79.38	90.09	13.49	25.40	1.79
RX86	2	21/2	-	-	90.49	103.58	15.08	28.58	1.98
RX87	2	3			100.03	113.11	15.08	28.58	3.22
RX88		4	-		123.83	139.29	17.46	31.75	2.98
RX89	4	31/2	-		114.30	129.78	18.26	31.75	5.82
RX90		5	-	-	155.58	174.63	19.84	44.45	17.10
RX91		10			260.35	286.94	30.18	45.24	3.31
RX99	8(2)		8(2)	-	234.95	245.67	11.91	25.40	3.31
RX201	0(2)		0(2)	13/8	46.04	51.46	5.74	11.30	-
RX201				113/16	57.15	62.31	5.56	11.10	
RX205 RX210				29/16	88.90	97.63	9.53	19.05	
RX210 RX215			-	41/16	130.18	140.89	9.55	25.40	

Metal ring IX type

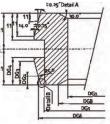


Table B.2–IX Dimensions and Weights of Type IX Metal Ring Sealing Gaskets

Metric System DN	British System NPS	IX size	DG1 mm	DG2 mm	DG3 mm	DG4 mm	DG5 mm	DG6 mm	DG7 mm	DG8 mm	HG1 mm	HG2 mm	HG3 mm	HG4 mm	HG5 mm	RG1 mm	Weight, kg
15	1/2	IX15	22.2	27.91	28.46	28.66	27,47	29.14	30.19	24.7	0.35	1.20	3.30	3.8	10.00	0.5	0.02
20	3/4	IX20	27.2	32.93	33.47	33.67	32.48	34.16	35.20	29.7	0.35	1.20	3.30	3.8	10.00	0.5	0.03
25	1	IX25	34.2	39.95	40.49	40.69	39.50	41.18	42.22	36.7	0.35	1.20	3.30	3.8	10.00	0.5	0.03
40	11/2	1X40	49.3	55.84	56.38	56.58	55.34	57.11	58.21	51.9	0.35	1.27	3.48	4.0	10.56	0.5	0.05
50	2	IX50	61.3	68.43	69.08	69.32	67.92	69.89	71.13	64.4	0.42	1.41	3.89	4.5	11.78	0.6	0.08
65	21/2	IX65	74.4	82.14	82.14	83.03	81.52	83.69	85.05	77.8	0.42	1.56	4.28	4.9	12.98	0.6	0.12
80	3	1X80	89.5	97.74	98.49	98.77	97.09	99.47	100.96	93.3	0.49	1.71	4.70	5.4	14.24	0.7	0.17
100	4	IX100	115.7	125.17	126.04	126.36	124,44	127.15	128.85	120.1	0.56	1.94	5.34	6.2	16.19	0.8	0.28
125	5	IX125	142.0	152.66	153.64	154.00	151.87	154.87	156.75	146.7	0.63	2.15	5.92	6.8	17.94	0.9	0.42
150	6	IX150	170.2	182.17	183.25	183.66	181.32	184.61	186.66	175.4	0.70	2.36	6.48	7.5	19.64	1.0	0.62
200	8	IX200	220.5	233.46	234.66	235.10	232.45	236.19	238.54	226.5	0.77	2.68	7.38	8.5	22.36	1.1	0.99
250	10	IX250	274.9	292.64	294.05	294.57	291.57	295.78	298.42	281.7	0.91	3.02	8.31	9.6	25.20	1.3	1.85
300	12	IX300	325.0	341.13	342.65	343.21	339.97	344.52	347.36	332.5	0.98	2.26	8.96	10.4	27.15	1.4	2.18
350	14	IX350	357.1	373.87	375.38	375.94	372.58	377.34	380.32	365.0	0.98	3.42	9.39	11.0	28.46	1.4	2.60
400	16	1X400	409.3	427.36	428.98	429.58	425.98	431.08	434.27	417.9	1.05	3.66	10.05	11.9	30.47	1.5	3.43
450	18	IX450	459.4	478.90	480.63	481.27	477.45	482.85	486.23	468.6	1.12	3.87	10.65	12.7	32.28	1.6	4.38
500	20	IX500	511.6	531.45	533.29	533.97	529.93	535.63	539.20	521.4	1.19	4.09	11.24	13.5	34.06	1.7	5.27
550	22	IX550	561.7	583.04	584.99	585.71	581.62	587.44	591.18	572.1	1.26	4.28	11.78	14.3	35.69	1.8	6.48
600	24	IX600	611.9	633.64	635.70	636.46	632.40	638.26	642.16	622.8	1.33	4.47	12.29	15.0	37.25	1.9	7.55
650	26	IX650	664.0	686.37	688.42	689.18	685.19	691.09	695.16	675.5	1.33	4.66	12.81	15.7	38.81	1.9	8,74
700	28	IX700	714.1	738.01	740.17	740.97	737.01	742.94	747.16	726,1	1.40	4.83	13.28	16.3	40.25	2.0	10.4
750	30	1X750	766.3	790.65	792.92	793.77	789.83	795.79	800.16	778.8	1.47	5.00	13.76	17.0	41.69	2.1	11.8
800	32	IX800	816.4	841.32	843.70	844.58	840.67	846.66	851.16	829,4	1.54	5.16	14.20	17.6	43.03	2.2	13.3
850	34	IX850	866.6	892.10	894.48	895.36	891.52	897.53	902.18	879.9	1.54	5.32	14.63	18.2	44.34	2.2	14.8
900	36	IX900	918.7	945.78	948.27	949.19	945.38	951.41	956.19	932.6	1.61	5.48	15.06	18.8	45.65	2.3	17.1
950	38	IX950	968.8	996.59	999.08	1000.00	996.26	1002.30	1007.21	983.1	1.61	5.63	15.47	19.3	46.88	2.3	18,9
1000	40	IX1000	1021.0	1049.28	1051.88	1052.85	1049.13	1055.19	1060.23	1035.7	1.68	5.77	15.88	19.9	48.12	2.4	20.9
1050	42	IX1050	1071.1	1100.00	1102.70	1103.71	1100.02	1106.10	1111.26	1086.2	1.75	5.92	16.27	20.4	49.29	2.5	23.0
1100	44	IX1100	1121.3	1150.83	1153.53	1154.54	1150.92	1157.00	1162.28	1136.8	1.75	6.05	16.64	21.0	50.43	2.5	25.1
1150	46	IX1150	1173.4	1203.55	1206.36	1207.40	1203.82	1209.91	1251,31	1189.3	1.82	6.19	17.03	21.5	51.59	2.6	27.5
1200	48	IX1200	1223.6	1254.39	1257.25	1257.25	1254.73	1260.83	1265.35	1239.8	1.82	6.32	17.39	22.0	52.68	2.6	29.9

Insulating gasket set

The flange is the most common fault area that requires appropriate sealing to prevent leakage, and cathodic isolation must also be carried out to prevent stray currents (which can cause metal corrosion and final breakdown). The insulation gasket group helps to solve the sealing problems of most flanges,

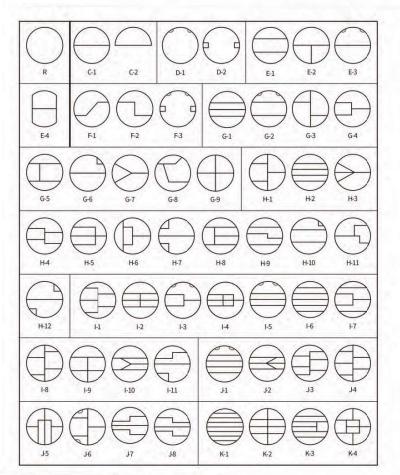
type D-type, E-type, F-type form Integrated sleeve and gasket set One integrated isolation sleeve Two -1/8 "steel or stainless steel gasl Double gasket and full-length sleeve One - Full length sleeve Two -1/8 "steel or stainless steel gasl "E" type comprehensive isolation gasket	
One integrated isolation sleeve Two –1/8 "steel or stainless steel gasl Double gasket and full–length sleeve One – Full length sleeve Two –1/8 "steel or stainless steel gasl "E" type comprehensive isolation gasket	
"D" ring connecting gasket O-ring isolation gasket Two –1/8 "isolation gaskets	set kets
colour Silver, white, and black	
size According to requirements	

Wrapped gasket

Wrapped gaskets are usually equipped with high-temperature fillers without asbestos. Standard fillers are usually sufficient to meet applications up to 900 ° F (482 ° C). But other soft fillers can meet higher temperatures or special applications. The standard metals used for manufacturing wrapped gaskets (regardless of type) are aluminum, copper, various brass, soft steel, nickel, Monel alloy, chromium nickel iron alloy, and 304, 316, 321, 347, and 410 stainless steel. The selection of metal used for the gasket wrapping part will depend on the usage conditions encountered:-Double wrapped gasket-Double enveloped corrugated gasket-Double enveloped corrugated gasket with corrugated metal filler-Single coverage overlap-Double enveloped double shell gasket

Double enveloped (DJ) gasket dimensions comply with ASME B16.20 manufacturing standards and are suitable for ASME B16.5 flanges.

			Ring OD, CLASS Series													
Nominal pipe size (NPS)	Gasket ID		150		30	300 40		00 60		00 9		0	15	1500		00
	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm
1/2	0.88	22.4	1.75	44.5	2	50.8	-	-	2	50.8	-	-	2.38	60.5	2.63	66.8
3/4	1.13	28.7	2.13	54.1	2.5	63.5	-	-	2.5	63.5	-	-	2.63	66.8	2.88	73.2
1	1.5	38.1	2.5	63.5	2.75	69.9	-	-	2.75	69.9	-	-	3	76.2	3.25	82.6
1 1/4	1.88	47.8	2.88	73.2	3.13	79.5	-	-	3.13	79.5	-	-	3.38	85.9	4	101.6
1 1/2	2.13	54.1	3.25	82.6	3.63	92.2			3.63	92.2	-	-	3.75	95.3	4.5	114.3
2	2.88	73.2	4	101.6	4.25	108	-	-	4.25	108		-	5.5	139.7	5.63	143
2 1/2	3.38	85.9	4.75	120.7	5	127		-	5	127	-	-	6.38	162.1	6.5	165.1
3	4.25	108	5.25	133.4	5.75	146.1	-	-	5.75	146.1	6.5	165.1	6.75	171.5	7.63	193.8
4	5.19	131.8	6.75	171.5	7	177.8	6.88	174.8	7.5	190.5	8	203.2	8.13	206.5	9.13	231.9
5	6	152.4	7.63	193.8	8.38	212.9	8.25	209.6	9.38	238.3	9.63	244.6	9.88	251	10.88	276.4
6	7.5	190.5	8.63	219.2	9.75	247.7	9.63	244.6	10.38	263.7	11.25	285.8	11	279.4	12.38	314.5
8	9.38	238.3	10.88	276.4	12	304.8	11.88	301.8	12.5	317.5	14	355.6	13.75	349.3	15.13	384.3
10	11.25	285.8	13.25	336.6	14.13	358.9	14	355.6	15.63	397	17	431.8	17	431.8	18.63	473.2
12	13.5	342.9	16	406.4	16.5	419.1	16.38	416.1	17.88	454.2	19.5	495.3	20.38	517.7	21.5	546.1
14	14.75	374.7	17.63	447.8	19	482.6	18.88	479.6	19.25	489	20.38	517.7	22.63	574.8	-	-
16	16.75	425.5	20.13	511.3	21.13	536.7	21	533.4	22.13	562.1	22.5	571.5	25.13	638.3	-	-
18	19.25	489	21.5	546.1	23.38	593.9	23.25	590.6	24	609.6	25	635	27.63	701.8	-	-
20	21	533.4	23.75	603.3	25.63	651	25.38	644.7	26.75	679.5	27.38	695.5	29.63	752.6	-	-
24	25.25	641.4	28.13	714.5	30.38	771.7	30.13	765.3	31	787.4	32.88	835.2	35.38	898.7	-	-


Double enveloped (DJ) gasket dimensions comply with ASME B16.20 manufacturing standards and are suitable for ASME B16.47 A flanges

	Gask	et ID	Ring OD, CLASS Series												
Nominal pipe size (NPS)	Claster ib		Class 150		Class 300		Class 400		Class 600		Class 900				
	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm			
26	26.5	673.1	30.38	771.7	32.75	831.9	32.63	828.8	34	863.6	34.63	879.6			
28	28.5	723.9	32.63	828.8	35.25	895.4	35	889	35.88	911.4	37.13	943.1			
30	30.5	774.7	34.63	879.6	37.38	949.5	37.13	943.1	38.13	968.5	39.63	1006.			
32	32.5	825.5	36.88	936.8	39.5	1003.3	39.38	1000.3	40.13	1019.3	42.13	1070.			
34 36	34.5	876.3	38.88	987.6	41.5	1054.1	41.38	1051.1	42.13	1070.1	44.63	1133.			
36	36.5	927.1	41.13	1044.7	43.88	1114.6	43.88	1114.6	44.38	1127.3	47.13	1197			
38	38.5	977.9	43.63	1108.2	41.38	1051.1	42.13	1070.1	43.38	1101.9	47.13	1197			
40	40.5	1028.7	45.63	1159	43.75	1111.3	44.25	1124	45.38	1152.7	49.13	1247.			
42	42.5	1079.5	47.88	1216.2	45.75	1162.1	46.25	1174.8	47.88	1216.2	51.13	1298.			
44	44.5	1130.3	50.13	1273.3	47.88	1216.2	48.38	1228.9	49.88	1267	53.75	1365.			
46	46.5	1181.1	52.13	1324.1	50	1270	50.63	1286	52.13	1324.1	56.38	1432			
48	48,5	1231.9	54.38	1381.3	52	1320.8	52.88	1343.2	54.63	1387.6	58.38	1482.			
50	50.5	1282.7	56.38	1432.1	54.13	1374.9	55.13	1400.3	56.88	1444.8	-	-			
52	52.5	1333.5	58.63	1489.2	56.13	1425.7	57.13	1451.1	58.88	1495.6	-	-			
54	54.5	1384.3	60.88	1546.4	58.63	1489.2	59.63	1514.6	61.13	1552.7	-	-			
56	56.5	1435.1	63.13	1603.5	60.63	1540	61.63	1565.4	63.13	1603.5		-			
58	58.5	1485.9	65.38	1660.7	62.63	1590.8	63.63	1616.2	65.38	1660.7	-	-			
60	60.5	1536.7	67.38	1711.5	64.63	1641.6	66.13	1679.7	68.13	1730.5		-			

Double enveloped (DJ) gasket dimensions comply with ASME B16.20 manufacturing standards and are suitable for ASME B16.47 series B flanges

	Gasket ID		Ring OD, CLASS Series												
Nominal pipe size (NPS)	Gusitor		Class 150		Class 300		Class 400		Class 600		Class 900				
	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm	Inches	mm			
26	26.5	673.1	28.44	722.4	30.25	768.4	29.25	743	30	762	32.88	835.			
28	28.5	723.9	30.44	773.2	32.38	822.5	31.38	797.1	32.13	816.1	35.38	898			
30	30.5	774.7	32.44	824	34.75	882.7	33.63	854.2	34.5	876.3	37.63	955.			
32	32.5	825.5	34.56	877.8	36.88	936.8	35.75	908.1	36.63	930.4	39.85	101			
34	34.5	876.3	36.69	931.9	39	990.6	37.75	958.9	39.13	993.9	42.13	1070			
36 38	36.5	927.1	38.75	984,3	41.13	1044.7	40.13	1019.3	41.13	1044.7	44.13	1120			
38	38.5	977.9	41	1041.4	43.13	1095.5	42.13	1070.1	43.38	1101.9	47.13	1197			
40	40.5	1028.7	43	1092.2	45.13	1146.3	44.25	1124	45.38	1152.7	49.13	1247			
42	42.5	1079.5	45	1143	47.13	1197.1	46.25	1174.8	47.88	1216.2	51.13	1298			
44	44.5	1130.3	47	1193.8	49.13	1247.9	48.38	1228.9	49.88	1267	53.75	1365			
46	46.5	1181.1	49.31	1252.5	51.75	1314.5	50.63	1286	52.13	1324.1	56.3B	143.			
46 48	48.5	1231.9	51.31	1303.3	53.75	1365.3	52.88	1343.2	54.63	1387.6	58.3B	1483			
50	50.5	1282.7	53.31	1354.1	55.75	1416.1	55.13	1400.3	56.88	1444.8	-	3			
50 52 54 56	52.5	1333.5	55.31	1404.9	57.75	1466.9	57.13	1451.1	58.88	1495.6	-	-			
54	54.5	1384.3	57.5	1460.5	60.13	1527.3	59.63	1514.6	61.13	1552.7	-	-			
	56.5	1435.1	59.5	1511.3	62.63	1590.8	61.63	1565.4	63.13	1603.5	-	-			
58	58.5	1485.9	62.06	1576.3	65.06	1652.5	63.63	1616.2	65.38	1660.7	-	-			
60	60.5	1536.7	64.06	1627.1	67.06	1703.3	66.13	1679.7	68.13	1730.5	-	-			

Standard Shape Index

HONGPACK 2600L

Operating temperature range -85°C/+260°C Maximum operating pressure Valve:200bar Pump:70bar Maximum shaft speed 8 m/s pH value 0-14

HONGPACK 3050

Maximum operating temperature 460 °C (air); 650 °C (steam) Maximum operating pressure 180bar Maximum shaft speed 20 m/s pH value

HONGPACK 3060

Maximum operating temperature 430 °C (air); 650 °C (steam) Maximum operating pressure 300 bar Maximum shaft speed 2 m/spH value 0-14

0-14

describe

high-temperature lubricant and corrosion inhibitor.

Usage environment

HONGPACK 3060 can be used for high-pressure, hightemperature valves and sealing applications. The tenants of high-performance graphitized yarn and Inconel nickel alloy filament have improved dimensional stability and long-term sealing performance. FLEXPACK 3060 has excellent chemical resistance and can be used to seal various chemical media (except for strong oxidants). Suitable for petroleum, petrochemical, chemical, and power plants.

HONGPACK 3090

describe

HONGPACK 2600L is a soft and resilient square woven filler made from lubricated (PTFE dispersion impregnated) PTFE yarn.

Usage environment

HONGPACK 2600L can be used for most chemical processing applications such as pumps, valves, or static applications. Especially suitable for applications with concentrated acids or requiring non polluting products (such as food and medicine).

describe

HONGPACK 3050 is a high-guality filler made from highpurity expanded graphite.

Usage environment

HONGPACK 3050 is a soft, lubricated natural material woven packing used to seal valves and pumps. The soft compressibility of expanded graphite can achieve good sealing performance under relatively low loads. The Flexpack 3050 has excellent chemical resistance and is suitable for applications involving multiple chemical media (except for strong oxidants)

This material is particularly suitable for sealing high-pressure and high-temperature valves in power plants and the petrochemical industry.

HONGPACK 3060 is a high-quality woven filler made of X, which is composed of high-purity graphite yarn and chromium nickel iron alloy filament.

In addition, the filler is treated with a specially formulated

describe

HONGPACK 3090 is a filler made from high-quality peroxide carbon fiber yarn treated with fine graphite powder and corrosion inhibitor.

Usage environment

HONGPACK 3090 has extensive chemical resistance and a wide range of applications, suitable for various dynamic and static applications.

	Maximum operating temperature 150°C
1	Maximum operating pressure 80 bar
A free	Maximum shaft speed 5 m/s
	pH value 5-10

HONGPACK 4300

HONGPACK 5000

HONGPACK 5002

Maximum operating temperatur
-100°C / + 280°C
Maximum operating pressure
150 bar (15 MPa)
Maximum shaft speed
15 m/s
pH value
1-13

HONGPACK 8010

Maximum operating temperature -200°C / 260°C Maximum operating pressure 25 MPa (250 bar) Maximum shaft sneed 12 m / sec

describe

HONGPACK 4300 is a high-quality woven packing made from polytetrafluoroethylene dispersion lubricant and fine vegetable varn.

Usage environment

HONGPACK 4300 is suitable for sealing various equipment, including valves, rotary pumps, and reciprocating pumps, suitable for treating water, salt water, solvents, petroleum products, and mild chemical products.

1.4.5	
1	Maximum operating temperat
	-85°C / + 260°C
	Maximum operating pressure 150 bar (15 MPa)
	Maximum shaft speed

describe

HONGPACK 5000 is a packing made of aramid impregnated polytetrafluoroethylene after hightemperature lubricant treatment.

Usage environment

HONGPACK 5000 is suitable for the steel, chemical, papermaking, pulp, and cement industries; Especially suitable for pumping abrasive slurry applications.

describe

HONGPACK 5002 is a high-quality X-woven packing made by impregnating it with special polytetrafluoroethylene and lubricating it with inert ubricant, combined with striped Keylar varn.

Usage environment

HONGPACK 5002 is suitable for high-pressure and high-speed valves and pumps, suitable for deep water seawater, modules, food, acids, and alkalis,

describe

HONGPACK 8010 is a type of packing made of X-woven type, made of high-performance graphite impregnated PTFE yarn, which gives the filler high thermal conductivity and low friction. The corners of 8010 are reinforced with high-strength aramid fibers, improving its anti extrusion ability under high temperature and pressure environments.

Usage environment

HONGPACK 8010 is suitable for rotary, reciprocating, and valve applications, suitable for sealing water, solvents, grinding media, weak acids and bases, and suitable for the food and chemical industries.

HONGPACK 8030

Operating temperature range -40°C / + 150°C Maximum operating pressure 80 bar Maximum shaft speed 10 m/s pH value 3-12

Operating temperature range

Maximum operating pressure

-85°C / + 260°C

Valve: 200bar

Pump: 70bar

20 m/s

pH value

0-14

Size

Maximum shaft speed

HONGPACK 9000

describe

describe

Usage environment

HONGPACK 9000 is a high-quality X-woven packing made from polytetrafluoroethylene (PTFE) yarn, woven with graphite and high-temperature lubricant.

HONGPACK 8030 is a high-guality X-woven packing, and

X-plain is a customized synthetic fiber that can be used as a filler. This product is impregnated with

HONGPACK 8030 is suitable for applications related to

rotation and is suitable for sealing water, steam, gases, most

solvents, acids, and moderate chemical applications. Due to

the absence of pigments, this filler will not cause

polytetrafluoroethylene (PTFE) and lubricated.

discoloration of the process medium.

Usage environment

HONGPACK 9000 is suitable for various rotating and static applications, including water, steam, slurry, oil, acid, and alkali.

HONGPACK PTFE Tanklid Packing

20-60mm Operating temperature range -50°C / +260°C Appearance Flat and uniform Tolerance <30 -0/+2mm Tolerance (30-80) -0/+4mm Density 0.55-0.75g/m pH value 0-14 Hot oil content 5-10%

Usage environment

The TANK LID PACKING hatch cover packing is made of a special elastic material with highpressure retraction elasticity as the inner core, wrapped in high-temperature resistant fiber material, and woven with corrosion-resistant fiber as the outer protective material. Multi functional materials are combined to form sealing fillers with special properties. Used for sealing manhole, filling hole, protective hole, hatch and other parts of large containers such as oil and chemicals.

Polytetrafluoroethylene (PTFE) safety splash guard

The most popular protective cover is compatible with almost all corrosive chemicals (including caustic soda and high concentration sulfuric acid) due to the addition of high-tech fabrics and polytetrafluoroethylene/Keff cables. Can be provided upon request.

This protective cover is commonly used in applications that seal acids, corrosive agents, solvents, fuels, lubricants, and oils. In addition to the types of pipe joints listed on this website, polytetrafluoroethylene (PTFE) protective covers can also be customized according to other accessories such as pumps, expansion joints, and hoses (for more information, please contact us).

Maximum operating temperature 235 ° C/450 ° F Flange rating: Ansi 150–600lb/DIN PN6–PN40

Pipe diameter size: standard; 1/4 '(10mm) -24 "(600mm), Larger size

Scope of application: Standards; Flanges, elbows, tees, couplings. Can be provided upon request

Polyvinyl chloride (PVC) safety splash guard

This protective cover is made of heat sealed PVC and aims to provide cost-effective or short-term solutions for low corrosion, high pressure, and high temperature applications. Usually used for water-based liquids, especially low concentration chemicals. Each protective cover comes with an external litmus indicator patch.

Maximum operating temperature 60 ° C/150 ° F Flange rating: Ansi 150–300lb/DIN PN6–PN25 Pipe diameter size: 1/4 '(10mm) –24 "(600mm), please contact us for other sizes Scope of application: Standards; Flanges, elbows, tees, couplings.

Polytetrafluoroethylene (PTFE) – Transparent safety splash guard

FLANGEGUARDS

This protective cover is usually used in applications where the line of sight cannot be obstructed by flanges/joints. Therefore, the release of liquid inside can be seen through the protective cover, providing visual indication. However, it should be noted that we do not recommend using this protective cover for the following applications – external indications that may cause liquid/condensation leakage errors,

Due to the addition of high-tech fabrics and polytetrafluoroethylene/Keff cables, this protective cover is compatible with a range of corrosive chemicals. Can be provided upon request. For strong acids and higher temperatures and pressures, please consider using standard polytetrafluoroethylene (PTFE) or ST/ST protective covers.

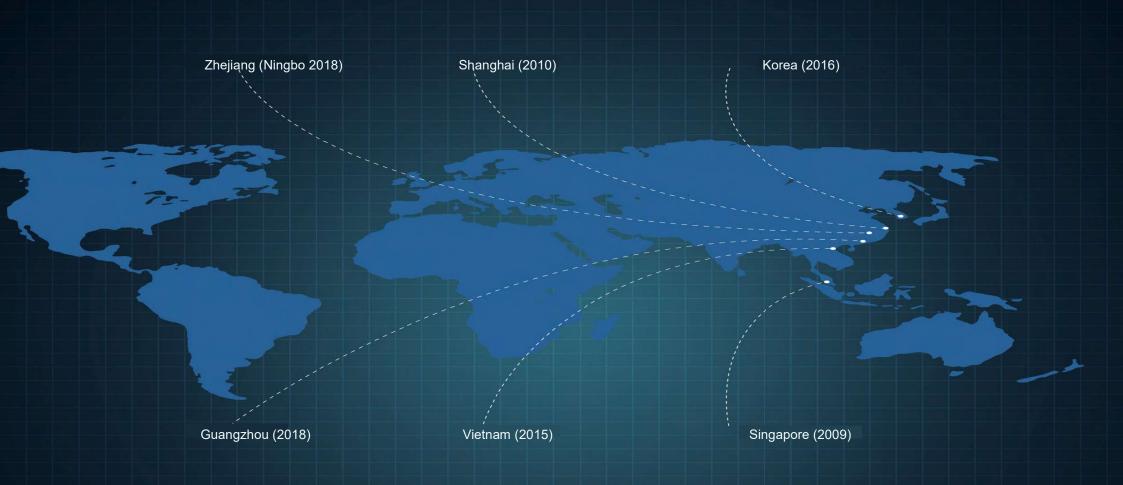
. Maximum operating temperature 150 ° C/300 ° F

Flange rating: Ansi 150-300lb/DIN PN6-PN40

Pipe diameter size: standard; 1/4 '(10mm) -24 "(600mm). Larger size

Scope of application: Standards; Flanges, elbows, tees, couplings. Can be provided upon request

This protective cover is commonly used in applications of acids, corrosive agents, solvents, fuels, lubricants, and sealing oils. The PTFE transparent protective cover can also be customized according to requirements to be suitable for other accessories such as pumps, expansion joints, and hoses (for more information, please contact us).


Stainless steel safety splash guard

The protective cover includes an external 316 stainless steel/stainless steel strip, an internal 4-layer stainless steel/stainless steel mesh, and an external quick release clip. The key design feature is the internal grid, which can effectively disperse all released pressure, thereby achieving safe dripping. Equally important is the precise alignment of the protective cover with the "curled" central grid section, as other unsuitable protective covers may cause additional lateral spraying or form dangerous fog.

Commonly used for fuel, lubrication, sealing, hydraulic oil, steam, and other chemicals. Its design and structural materials make it suitable for high-temperature and high-pressure application environments. Currently only applicable to flanges – but we can provide protective cover solutions for special applications, so please feel free to contact us for further consultation.

Maximum operating temperature 500 ° C/930 ° F Flange rating: Ansi 150–15001b/DIN PN6–PN100 Pipe diameter size: standard; 1/4 '(10mm) –24 "(600mm), please contact us for other sizes Applicable scope: flange

